首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many older patients, because of their high prevalence of coronary artery disease, are candidates for percutaneous coronary interventions (PCI), but the effects of vascular aging on restenosis after PCI are not yet well understood. Balloon injury to the right carotid artery was performed in adult and old rats. Vascular smooth muscle cell (VSMC) proliferation, apoptotic cell death, together with Akt induction, telomerase activity, p27kip1, and endothelial nitric oxide synthase (eNOS) expression was assessed in isolated arteries. Neointima hyperplasia and vascular remodeling along with endothelial cell regeneration were also measured after balloon injury. Arteries isolated from old rats exhibited a significant reduction of VSMC proliferation and an increase in apoptotic death after balloon injury when compared with adult rats. In the vascular wall of adult rats, balloon dilation induced Akt phosphorylation, and this was barely present in old rats. In arteries from old rats, Akt-modulated cell cycle check points like telomerase activity and p27kip1 expression were decreased and increased, respectively, compared with adults. After balloon injury, old rats showed a significant reduction of neointima formation and an increased vascular negative remodeling compared with adults. These results were coupled by a marked delay in endothelial regeneration in aged rats, partially mediated by a decreased eNOS expression and phosphorylation. Interestingly, chronic administration of L-arginine prevented negative remodeling and improved reendothelialization after balloon injury in aged animals. A decreased neointimal proliferation, an impaired endothelial regeneration, and an increase in vascular remodeling after balloon injury were observed in aged animals. The molecular mechanisms underlying these responses seem to be a reduced Akt and eNOS activity.  相似文献   

3.
旋覆花素抑制血管内皮剥脱诱导的粘附分子表达   总被引:2,自引:0,他引:2  
目的观察旋覆花素对内皮剥脱诱导的新生内膜形成过程中血管壁粘附分子OPN、ICAM-1、ILK表达的影响,为寻找该药物抑制新生内膜形成的作用靶标提供实验依据。方法采用主动脉球囊损伤后血管狭窄动物模型,用免疫组织化学和Western Blot方法分别检测血管壁中骨桥蛋白(osteopontin,OPN)、细胞间粘附分子-1(intercellular adhesion molecule-1,ICAM-1)、整合素偶联激酶(integrin-linked kinase,ILK)的表达变化及旋覆花素对其的影响。结果血管内皮剥脱可诱导血管壁平滑肌细胞大量增生,新生内膜呈弥漫性增厚,血管损伤局部组织中OPN、ICAM-1、ILK的表达均比正常对照组明显升高(P<0.05)。旋覆花素治疗组在球囊损伤后,血管内膜增生程度显著减轻,血管壁OPN、ICAM-1、ILK的表达均比模型组明显降低(P<0.05)。结论旋覆花素减缓新生内膜形成的效应与其抑制粘附分子的表达、阻断粘附分子信号传递有关。  相似文献   

4.
Restenosis is the major clinical problem of angioplasty. We have previously shown that neointima formation is strikingly suppressed in midkine (MK)-deficient mice. Neointima formation is restored if MK protein is administrated to the deficient mice. MK is a heparin-binding growth factor and implicated in the migration of inflammatory cells and vascular smooth muscle cells. Consistently, the suppression of neointima formation in the deficient mice is accompanied by suppression of recruitment of inflammatory cells into the vascular wall. Here, we evaluated the potential of MK antisense oligodeoxyribonucleotide (ODN) for the prevention of restenosis. We cloned the cDNA of rabbit MK, which showed a strongly conserved sequence in mammals. The balloon injury induced MK expression, with the maximum level occurring 7-14 days after angioplasty, in the rabbit carotid artery. Two antisense ODNs suppressed the production of MK in a rabbit kidney cell line, RK13 cells, one of which was then transfected into the arterial wall by means of lipofection immediately after balloon treatment. The antisense ODN suppressed MK induction in vivo and consequently suppressed neointima formation to 60% of the control level. These results suggest that MK is a candidate molecular target for the therapy for vascular restenosis.  相似文献   

5.
Cytokeratins are not present in the vascular smooth muscle cells (VSMCs) of normal arteries, but they are detectable in the VSMCs of atherosclerotic lesions. A correlation between cytokeratin expression and VSMC phenotype is proposed, but an examination of VSMCs after mechanical injury has yet to be performed. Immunohistochemistry was used to monitor proteins in arterial sections. Western blotting enabled quantification of protein levels. Angioplasty of porcine femoral artery in vivo and porcine coronary artery in vitro served as models of vascular injury. Cytokeratins 8 and 18 were expressed by VSMCs in porcine femoral artery lesions 14 days after balloon angioplasty. Cytokeratins were also present in the neointima of porcine coronary artery segments placed into organ culture for 4 days. Cytokeratin expression was decreased in the presence of inhibitors that affect MAP kinase, PI3 kinase, Src kinase, and G protein, but not in the presence of an AT1 receptor antagonist. Cytokeratin expression also occurred when VSMCs were plated onto collagen in the presence of serum. We conclude that mechanical injury induces expression of cytokeratin 8 and 18 both in vitro and in vivo by synthetic VSMCs that migrate into the neointima. Furthermore, cytokeratin expression requires cellular attachment to extracellular matrix proteins in conjunction with mitogenic stimulation.  相似文献   

6.
PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury   总被引:7,自引:0,他引:7  
In this study, we determined the role of PDGF-D, a new member of the PDGF family, in a rat model of balloon injured artery made with a 2F catheter in Sprague-Dawley male rats. PDGF-D expression was studied in the injured and control segments of abdominal aorta. The function of PDGF-D was evaluated in rat vascular smooth muscle cells stably transfected with PDGF-D gene. We found that in normal abdominal aorta, PDGF-D was highly expressed in adventia, moderate in endothelia, and unidentified in media. Stable transfection of PDGF-D gene into vascular smooth muscle cells increased the cell migration by 2.2-fold, and the proliferation by 2.3-fold, respectively, and MMP-2 production and activity as well. These results support the fact that PDGF-D is involved in the formation of neointimal hyperplasia induced by balloon catheter injury and may serve as a target in preventing vascular restenosis after coronary angioplasty.  相似文献   

7.
8.
Caveolae represent an important structural element involved in endothelial signal-transduction. The present study was designed to investigate the role of caveolae in endothelium-dependent relaxation of different vascular beds. Caveolae were disrupted by cholesterol depletion with filipin (4x10(-6) g L(-1)) or methyl-beta-cyclodextrin (MCD; 1x10(-3) mol L(-1)) and the effect on endothelium-dependent relaxation was studied in rat aorta, small renal arteries and mesenteric arteries in the absence and presence of L-NMMA. The contribution of NO and EDHF, respectively, to total relaxation in response to acetylcholine (ACh) gradually changed from aorta (71.2+/-6.1% and 28.8+/-6.1%), to renal arteries (48.6+/-6.4% and 51.4+/-6.4%) and to mesenteric arteries (9.1+/-4.0% and 90.9+/-4.1%). Electron microscopy confirmed filipin to decrease the number of endothelial caveolae in all vessels studied. Incubation with filipin inhibited endothelium-dependent relaxation induced by cumulative doses of ACh (3x10(-9)-10(-4) mol L(-1)) in all three vascular beds. In aorta, treatment with either filipin or MCD only inhibited the NO component, whereas in renal artery both NO and EDHF formation were affected. In contrast, in mesenteric arteries, filipin treatment only reduced EDHF formation. Disruption of endothelial caveolae is associated with the impairment of both NO and EDHF in acetylcholine-induced relaxation.  相似文献   

9.
Previous studies indicate that release of superoxide radicals during coronary reperfusion following occlusion may relate to the loss of endothelium-dependent coronary arterial relaxation. We examined coronary arterial ring relaxation in dogs subjected to temporary circumflex (Cx) coronary artery occlusion and treated with saline or the superoxide radical scavenger superoxide dismutase (SOD). In dogs treated with saline, Cx coronary ring relaxation in response to leukotriene D4 (LTD4) and acetylcholine (ACh) was attenuated (p less than 0.01), but coronary relaxation in response to nitroglycerin was preserved, suggesting loss of endothelium-dependent relaxation following coronary reperfusion. In contrast, Cx coronary relaxation in response to LTD4 and ACh was preserved in the SOD-treated dogs (p less than 0.01 compared to saline-treated dogs). To further examine the role of superoxide radicals in the loss of endothelium-dependent relaxation, normal nonischemic canine coronary artery and rat aortic rings were exposed to a superoxide radical generating system of xanthine and xanthine oxidase in vitro. Xanthine plus xanthine oxidase treatment caused a significant (p less than 0.01) decrease in the relaxant effects of ACh. Pretreatment of rat aortic rings with SOD protected against the loss of ACh-induced relaxation. These observations suggest that release of superoxide radicals during reperfusion is the basis of loss of endothelium-dependent coronary arterial relaxation. Treatment with superoxide radical scavengers prior to coronary reperfusion protects against this loss.  相似文献   

10.
Wu CH  Tsai BR  Hsieh WT  Chang GY  Mao SJ  Chang WC 《Life sciences》2001,70(6):669-679
After percutaneous transluminal coronary angioplasty (PTCA), 30-50% of the patients may present with restenosis within 6 months. The aim of this study was to search for a preventive remedy against the balloon injury-induced neointima formation. Ginseng, with its wide indications on immune and cardiovascular functions, has prompted us to explore its role in neointima formation. In the present study, we aimed to explore if a standardized Panax Ginseng extract G115 was able to inhibit neointimal formation. With BrdU luminencence assay, maximal proliferation of rat smooth muscle cells was reduced to 24% of control values by G115. Norepinephrine-induced vasocontraction was antagonized in 21% and 44% by 1.44mg/ml and 2.88mg/ml of G115, respectively. Neointima-to-lumen area ratio of balloon-injured rat carotid arteries was reduced 77.3% by G115 as compared to the sham control. These results demonstrate the preventive effects of ginsenosides on angioplasty-mediated neointima formation.  相似文献   

11.
Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.  相似文献   

12.
Our objective was to determine if the ability of an angiotensin-converting enzyme (ACE) inhibitor to attenuate neointima formation in balloon-damaged vessel is expressed in an isolated organ culture model of neointimal growth. In vivo balloon angioplasty in combination with in vitro organ culture was used to produce a unique model of vascular neointima formation. Aortic segments were cultured in medium containing a broad concentration range of the ACE inhibitor enalaprilat (0-100 microM). Cell proliferative indices and neointima:media thickness ratios were determined from vessel segments after 1, 4, and 7 days in culture. We observed no significant effect on either parameter at any dose of enalaprilat. Linear regression analysis on the rate of increase in intima to media thickness ratios during the 7 days of culture also showed no effect of enalaprilat at any concentration. We conclude that enalaprilat has no effect on neointimal growth or cell proliferation in this vascular organ culture model, and it is suggested that ACE inhibitors may act by mechanisms other than local converting enzyme inhibition to attenuate neointimal growth in rabbits following vascular ballooning in vivo.  相似文献   

13.
In congestive heart failure (CHF), coronary vascular relaxation is associated with endothelial dysfunction and nitric oxide (NO) deficiency. This study explored the reversibility of this process in hearts recovering from CHF and its related mechanisms. Dogs were chronically instrumented to measure cardiac function and coronary blood flow (CBF). Heart failure was induced by right ventricular pacing at 240 beats/min for 3-4 wk, and cardiac recovery (CR) was allowed by the termination of cardiac pacing for 3-4 wk after the development of CHF, in which left ventricular contractile function was restored by 80-90%. The endothelium-dependent CBF response to bradykinin and acetylcholine was depressed in CHF and fully restored in CR. Myocardial NOx (nitrate/nitrite), endothelial NO synthase (eNOS) mRNA expression, total protein, and phosphorylated eNOS decreased significantly in failing hearts. However, myocardial NOx recovered to 78% of control and phosphorylated eNOS was fully restored in CR, despite the fact that eNOS mRNA expression and protein levels remained lower than control. Furthermore, the endothelium-independent CBF response to nitroglycerin did not change in CHF; however, it increased by 75% in CR, in conjunction with a near threefold increase in the phosphorylation of vasodilation-stimulated phosphoprotein (VASP) at Ser(239) in recovering hearts. Thus the complete restoration of endothelium-dependent coronary vascular relaxation during cardiac recovery from CHF was mediated by 1) a restoration of phosphorylated eNOS for partial recovery of the NO production and 2) an increase in cGMP/cGMP-dependent protein kinase-I pathway signaling activity for the enhancement of coronary vascular smooth muscle relaxation in response to NO.  相似文献   

14.
Smooth muscle proliferation of injured blood vessels leads to pathologically significant stenosis in animals and humans. We report here the pharmacological confirmation of an involvement of angiotensin II in this process as a major, necessary mediator of neointima formation. In the rat carotid artery, an animal model of post-angioplastic restenosis, we have obtained by local intraluminal infusion of peptidic angiotensin II antagonist after balloon catheterization, suppression of neointima formation and preservation of the luminal integrity. Sham operated control animals treated without medication and operated control animals treated simultaneously with angiotensin converting enzyme inhibitor and with agonistic angiotensin II, suffered major stenosis through the myoproliferative response of the injured vessel. These results prove that angiotensin II plays a key role as a mediator of vascular neointima formation.  相似文献   

15.
This experiment was designed to investigate whether chronic hypoxia affect rat pulmonary artery (PA) endothelium-dependent relaxation and the content of cGMP in PA. Both ACh and ATP could induce endothelium-dependent relaxation of PA, not prevented by indomethacin, but completely abolished by methylene blue. These results indicated that vasodilatation of PA induced by both ACh and ATP is mediated by EDRF (endothelium-derived relaxing factor). Chronic hypoxia significantly depressed PA endothelium-dependent relaxation. The percent relaxation of IPPA and EPPA by 10(-6) mol/L ACh was 61.3% and 59.2% of those in control, and the percent relaxation of IPPA and EPPA by 1.8 x 10(-5) mol/L ATP was 64.9% and 55.3% respectively of the control. Chronic hypoxia also depressed SNP-induced endothelium-independent relaxation. Chronic hypoxia significantly decreased the content of cGMP in PA. The basic level of cGMP was 51.9 +/- 5.7 (n = 14) in hypoxia group and 84.9 +/- 9.7 (n = 14) pmol/g wet wt. in control group (P less than 0.01). After treatment of PA with ACh (10(-7) mol/L), the content of cGMP was 91.4 +/- 7.3 (n = 5) pmol/g wet wt. in hypoxic group and 240.8 +/- 30.6 (n = 5) pmol/g wet wt. in control group (P less than 0.01). Our data suggest that chronic hypoxia might depress rat pulmonary artery endothelium-dependent relaxation through the inhibition of soluble guanylate cyclase in vascular smooth muscle cells.  相似文献   

16.
Long-term treatment with angiotensin-converting enzyme (ACE) inhibitors as well as angiotensin II type 1 (AT(1)) receptor antagonists and statins reduces cardiovascular mortality in patients with coronary artery disease as well as chronic heart failure. Little is known about the acute effects of these compounds on vascular reactivity of coronary resistance vessels. Coronary arterioles were obtained from patients undergoing coronary bypass operation (atherosclerosis group) or valve replacement (control group). Responses to endothelium-dependent agonists (histamine, serotonin, and acetylcholine) as well as to the endothelium-independent agonist sodium nitroprusside (SNP) were investigated under baseline conditions and after incubation (15 min) with lisinopril (ACE inhibitor), candesartan (AT(1) receptor antagonist), or fluvastatin. In atherosclerotic vessels, vasorelaxation was significantly reduced to all endothelium-dependent agonists but not, however, to SNP (77 +/- 8, -24 +/- 16, -46 +/- 24, and 98 +/- 8% relaxation for histamine, serotonin, acetylcholine, and SNP, respectively). Lisinopril and fluvastatin but not candesartan significantly improved the responses to the endothelium-dependent agonists (lisinopril: 94 +/- 4, 17 +/- 22, and -20 +/- 13%; fluvastatin: 96 +/- 8, 23 +/- 21, and -25 +/- 18% relaxation for histamine, serotonin, and acetylcholine, respectively). The effect of lisinopril was prevented by pretreatment with a bradykinin antagonist (HOE-130) and dichloroisocoumarine, an inhibitor of kinine-forming enzymes. Pretreatment with a nitric oxide (NO) synthase inhibitor abolished the improvement of endothelial function by lisinopril and fluvastatin. Vascular reactivity in the control group was not influenced by any of the pharmacological interventions. The data demonstrate that in atherosclerosis, endothelium-dependent relaxation of coronary resistance arteries is severely compromised. The impairment can acutely be reversed by ACE inhibitors and statins via increasing the availability of NO.  相似文献   

17.
Allograft coronary disease is the dominant cause of increased risk of death after cardiac transplantation. While the percutaneous insertion of stents is the most efficacious revascularization strategy for allograft coronary disease there is a high incidence of stent renarrowing. We developed a novel rabbit model of sex-mismatched allograft vascular disease as well as the response to stent implantation. In situ hybridization for the Y-chromosome was employed to detect male cells in the neointima of stented allograft, and the population of recipient derived neointimal cells was measured by quantitative polymerase chain reaction and characterized by immunohistochemistry. To demonstrate the participation of circulatory derived cells in stent neointima formation we infused ex vivo labeled peripheral blood mononuclear cells into native rabbit carotid arteries immediately after stenting. Fourteen days after stenting the neointima area was 58% greater in the stented vs. non-stented allograft segments (p = 0.02). Male cells were detected in the neointima of stented female-to-male allografts. Recipient-derived cells constituted 72.1+/-5.7% and 81.5+/-4.2% of neointimal cell population in the non-stented and stented segments, respectively and the corresponding proliferation rates were only 2.7+/-0.5% and 2.3+/-0.2%. Some of the recipient-derived neointimal cells were of endothelial lineage. The ex vivo tagged cells constituted 9.0+/-0.4% of the cells per high power field in the stent neointima 14 days after stenting. These experiments provide important quantitative data regarding the degree to which host-derived blood-borne cells contribute to neointima formation in allograft vasculopathy and the early response to stent implantation.  相似文献   

18.
Phosphorothioate (PS) oligodeoxynucleotides (ODN) inhibit vascular smooth muscle cell proliferation through antisense and G-quartet aptameric mechanisms. PS-ODN such as the cytidine homopolymers, have been demonstrated to have non-G-quartet, nonsequence-specific inhibitory effects in a rat carotid balloon injury model of neointimal proliferation. We sought to test the efficacy of S-dC28, a cytidine homopolymer lacking G-quartets, on neointimal proliferation in the porcine coronary artery model of balloon injury. A total of 23 animals (11 controls, 12 treated) were subjected to balloon injury in a coronary artery, followed by infusion of control solution or S-dC28 via porous balloon, the Scimed Dispatch Coronary Infusion Catheter. After a mean interval of 49 days, the animals were killed, and the target coronary segments were examined histologically. S-dC28 did not significantly inhibit neointimal formation. Fluorescein isothiocyanate (FITC)-labeled S-dC28 was present in the intima and media immediately after administration but was present mainly within the adventitia 3 hours after administration. S-dC28, when delivered by a Scimed Dispatch Coronary Infusion Catheter (Maple Grove, MN), did not significantly affect neointimal proliferation after balloon injury in a porcine coronary artery model.  相似文献   

19.
Hyperleptinemia, associated with prediabetes, is an independent risk factor for coronary artery disease and a mediator of coronary endothelial dysfunction. We previously demonstrated that acutely raising the leptin concentration to levels comparable with those observed in human obesity significantly attenuates coronary dilation/relaxation to acetylcholine (ACh) both in vivo in anesthetized dogs and in vitro in isolated canine coronary rings. Accordingly, the purpose of this investigation was to extend these studies to a model of prediabetes with chronic hyperleptinemia. In the present investigation, experiments were conducted on control and high-fat-fed dogs. High-fat feeding caused a significant increase (131%) in plasma leptin concentration. Furthermore, in high-fat-fed dogs, exogenous leptin did not significantly alter vascular responses to ACh in vivo or in vitro. Coronary vasodilator responses to ACh (0.3-30.0 microg/min) and sodium nitroprusside (1.0-100.0 microg/min) were not significantly different from those observed in control dogs. Also, high-fat feeding did not induce a switch to an endothelium-derived hyperpolarizing factor as a major mediator of muscarinic coronary vasodilation, because dilation to ACh was abolished by combined pretreatment with N(omega)-nitro-l-arginine methyl ester (150 microg/min ic) and indomethacin (10 mg/kg iv). Quantitative, real-time PCR revealed no significant difference in coronary artery leptin receptor gene expression between control and high-fat-fed dogs. In conclusion, high-fat feeding induces resistance to the coronary vascular effects of leptin, and this represents an early protective adaptation against endothelial dysfunction. The resistance is not due to altered endothelium-dependent or -independent coronary dilation, increased endothelium-derived hyperpolarizing factor, or changes in coronary leptin receptor mRNA levels.  相似文献   

20.
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号