首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

2.
3.
The creatine kinase (CK) system is involved in the rapid transport of high-energy phosphates from the mitochondria to the sites of maximal energy requirements such as myofibrils and sarcolemmal ion pumps. Hearts of mice with a combined knockout of cytosolic M-CK and mitochondrial CK (M/Mito-CK(-/-)) show unchanged basal left ventricular (LV) performance but reduced myocardial high-energy phosphate concentrations. Moreover, skeletal muscle from M/Mito-CK(-/-) mice demonstrates altered Ca2+ homeostasis. Our hypothesis was that in CK-deficient hearts, a cardiac phenotype can be unmasked during acute stress conditions and that susceptibility to ischemia-reperfusion injury is increased because of altered Ca2+ homeostasis. We simultaneously studied LV performance and myocardial Ca2+ metabolism in isolated, perfused hearts of M/Mito-CK(-/-) (n = 6) and wild-type (WT, n = 8) mice during baseline, 20 min of no-flow ischemia, and recovery. Whereas LV performance was not different during baseline conditions, LV contracture during ischemia developed significantly earlier (408 +/- 72 vs. 678 +/- 54 s) and to a greater extent (50 +/- 2 vs. 36 +/- 3 mmHg) in M/Mito-CK(-/-) mice. During reperfusion, recovery of diastolic function was impaired (LV end-diastolic pressure: 22 +/- 3 vs. 10 +/- 2 mmHg), whereas recovery of systolic performance was delayed, in M/Mito-CK(-/-) mice. In parallel, Ca2+ transients were similar during baseline conditions; however, M/Mito-CK(-/-) mice showed a greater increase in diastolic Ca2+ concentration ([Ca2+]) during ischemia (237 +/- 54% vs. 167 +/- 25% of basal [Ca2+]) compared with WT mice. In conclusion, CK-deficient hearts show an increased susceptibility of LV performance and Ca2+ homeostasis to ischemic injury, associated with a blunted postischemic recovery. This demonstrates a key function of an intact CK system for maintenance of Ca2+ homeostasis and LV mechanics under metabolic stress conditions.  相似文献   

4.
We investigated whether the cardioprotection induced by heat stress (HS) pretreatment is associated with mitigation of phospholipid degradation during the ischemic and/or postischemic period. The hearts, isolated from control rats and from heat-pretreated rats (42 degrees C for 15 min) either 30 min (HS0.5-h) or 24 h (HS24-h) earlier, were subjected to 45 min of no-flow ischemia, followed by 45 min of reperfusion. Unesterified arachidonic acid (AA) accumulation was taken as a measure for phospholipid degradation. Significantly improved postischemic ventricular functional recovery was only found in the HS24-h group. During ischemia, AA accumulated comparably in control and both HS groups. During reperfusion in control and HS0.5-h hearts, AA further accumulated (control hearts from 82 +/- 33 to 109 +/- 51 nmol/g dry wt, not significant; HS-0.5h hearts from 52 +/- 22 to 120 +/- 53 nmol/g dry wt; P < 0.05). In contrast, AA was lower at the end of the reperfusion phase in HS24-h hearts than at the end of the preceding ischemic period (74 +/- 18 vs. 46 +/- 23 nmol/g dry wt; P < 0.05). Thus accelerated reperfusion-induced degradation of phospholipids in control hearts is completely absent in HS24-h hearts. Furthermore, the lack of functional improvement in HS0.5-h hearts is also associated with a lack of beneficial effect on lipid homeostasis. Therefore, it is proposed that enhanced membrane stability during reperfusion is a key mediator in the heat-induced cardioprotection.  相似文献   

5.
The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 +/- 3 vs. 32 +/- 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals (P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.  相似文献   

6.
Long duration ischemia in hypothermic conditions followed by reperfusion alters membrane transport function and in particular Na,K-ATPase. We compared the protective effect of two well-described cardioplegic solutions on cardiac Na,K-ATPase activity during reperfusion after hypothermic ischemia. Isolated perfused rat hearts (n = 10) were arrested with CRMBM or UW cardioplegic solutions and submitted to 12 hr of ischemia at 4 degrees C in the same solution followed by 60 min of reperfusion. Functional recovery and Na,K-ATPase activity were measured at the end of reperfusion and compared with control hearts and hearts submitted to severe ischemia (30 min at 37 degrees C) followed by reflow. Na,K-ATPase activity was not altered after 12 hr of ischemia and 1 hr reflow when the CRMBM solution was used for preservation (55 +/- 2 micromolPi/mg prot/hr) compared to control (53 +/- 2 micromol Pi/mg prot/hr) while it was significantly altered with UW solution (44 +/- 2 micromol Pi/mg prot/hr, p < 0.05 vs control and CRMBM). Better preservation of Na,K-ATPase activity with the CRMBM solution was associated with higher functional recovery compared to UW as represented by the recovery of RPP, 52 +/- 12% vs 8 +/- 5%, p < 0.05 and coronary flow (70 +/- 2% vs 50 +/- 8%, p < 0.05). The enhanced protection provided by CRMBM compared to UW may be related to its lower K+ content.  相似文献   

7.
We have proposed that pharmacological preconditioning, leading to PKC-epsilon activation, in hearts improves postischemic functional recovery through a decrease in actomyosin ATPase activity and subsequent ATP conservation. The purpose of the present study was to determine whether moderate PKC-independent decreases in actomyosin ATPase are sufficient to improve myocardial postischemic function. Rats were given propylthiouracil (PTU) for 8 days to induce a 25% increase in beta-myosin heavy chain with a 28% reduction in actomyosin ATPase activity. Recovery of postischemic left ventricular developed pressure (LVDP) was significantly higher in PTU-treated rat hearts subjected to 30 min of global ischemia than in control hearts: 57.9 +/- 6.2 vs. 32.6 +/- 5.1% of preischemic values. In addition, PTU-treated hearts exhibited a delayed onset of rigor contracture during ischemia and a higher global ATP content after ischemia. In the second part of our study, we demonstrated a lower maximal actomyosin ATPase and a higher global ATP content after ischemia in human troponin T (TnT) transgenic mouse hearts. In mouse hearts with and without a point mutation at F110I of human TnT, recovery of postischemic LVDP was 55.4 +/- 5.5 and 62.5 +/- 14.5% compared with 20.0 +/- 2.9% in nontransgenic mouse hearts after 35 min of global ischemia. These results are consistent with the hypothesis that moderate decreases in actomyosin ATPase activity result in net ATP conservation that is sufficient to improve postischemic contractile function.  相似文献   

8.
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 degrees C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 microL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 microL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 +/- 20, 43 +/- 6, and 95 +/- 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 +/- 4, 46 +/- 4, and 60 +/- 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% +/- 2%, 22% +/- 2%, and 20% +/- 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.  相似文献   

9.
The effects of H290/51, a novel indenoindole derivative inhibitor of lipid peroxidation, on ultrastructural changes during cardiac ischemia-reperfusion injury were investigated. Langendorff-perfused rat hearts were exposed to 30 minutes of global ischemia followed by 20 minutes of reperfusion: Group A: Control hearts with standard buffer perfusion with vehicle added. Group B: H290/51 (10(-6) mol/l) added to buffer throughout stabilisation and reperfusion. In an additional Group C, where hearts were given H290/51, but not subjected to ischemia, the ultrastructure was preserved till the end of reperfusion. Absolute volumes and calculated volume fractions (Vv) of tissue and subcellular components were assessed with quantitative stereologic morphometry. After ischemia the increase in volume of extracellular interstitium was inhibited by H290/51 (247 +/- 80 vs. 159 +/- 50 microl, mean +/- SD, groups A and B, respectively, p<0.05). The Vv (interstitium/myocard) was higher in control hearts (0.318 +/- 0.062 vs. 0.206 +/- 0.067, p<0.05). Vv (cell edema/myocyte) was higher in the control group (0.144 +/- 0.07 vs. 0.083 +/- 0.033, p<0.05). Vv (myocyte/myocard) was higher in group B after ischemia than in the control group (0.622 +/- 0.071 vs. 0.707 +/- 0.052, p<0.05). The decreased Vv (capillary/myocard) after ischemia was inhibited by H290/51. After reperfusion there was no difference between groups. Treatment with H290/51 reduced edema and ensured better preserved sarcolemmal membrane structure during ischemia. The effect was no longer present after reperfusion.  相似文献   

10.
Cardiac troponin I (cTnI) degradation has been noted in the stunned myocardium of rodents after ischemia and reperfusion and is one proposed mechanism for the decreased left ventricular (LV) contractility in postischemic hearts. cTnI degradation has been best described after reperfusion of the ischemic myocardium. The effect of ischemia, independent of reperfusion, on cTnI breakdown has not been well characterized. We tested the hypothesis that progressive cTnI degradation occurs with increasing durations of ischemia and that this ischemia-based degradation is, in part, oxidant mediated. Isolated perfused rat hearts underwent global ischemia of 15, 20, or 25 min with and without reperfusion. A second series of hearts was treated with the antioxidants tiron (10 mM) and N-acetylcysteine (4 mM) before 20 min of global ischemia without reperfusion. cTnI degradation was measured using a cTnI-specific antibody and Western blot analyses. A progressive increase in cTnI degradation was seen with increasing duration of ischemia (no reperfusion), which correlated with the return of LV developed pressure during reperfusion. The extent of cTnI degradation was increased in hearts pretreated with antioxidants, although the qualitative degradation pattern was not altered. We conclude that a time-dependent cTnI breakdown occurs during global ischemia that is independent of reperfusion. cTnI breakdown during ischemia is further increased in the presence of antioxidants, suggesting ROS generated during ischemia may play a cTnI protective role.  相似文献   

11.
We examined the effects of sprint training on left ventricular diastolic stiffness during normoxia and after ischemia-reperfusion (I/R). Thirty-seven, male Sprague-Dawley rats, weighing 150-175 g at the initiation of the experiment, were randomly assigned to a sedentary, control group (n = 20) or to a high-intensity, sprint-trained group (n = 17). Animals were trained 5 days/wk on a motor-driven treadmill for 6 wk. High-intensity sprint training consisted of running five 1-min sprints at 75 m/min, 15% grade, interspersed with 1-min active recovery runs at a speed of 20 m/min, 15% grade. Langendorff-derived isolated heart performance was measured before and after 20 min of no-flow ischemia followed by 30 min of reperfusion. Isolated myocytes were harvested from a subset of postischemic hearts. Sprint training reduced Langendorff-derived LV chamber stiffness (P < 0.05) and induced a rightward shift in the LV pressure-volume relationship during both normoxic perfusion and after I/R. LV developed pressure after I/R was also better preserved in hearts obtained from sprint-trained animals (P < 0.05), a result that is in part related to a lower postischemic LV chamber stiffness in sprint-trained hearts. The putative impact of sprint training on postischemic LV chamber stiffness was masked by glycolytic inhibition with iodoacetate, suggesting that glycolysis was involved in the better postischemic recovery observed in sprint-trained hearts. There was a tendency for enhanced postischemic cardiomyocyte shortening in sprint-trained cardiomyocytes compared with control. The rate of myocyte relaxation, i.e., time for 50% relaxation of the Ca(2+) transient amplitude, was similar between groups. These data suggest that additional mechanisms unrelated to Ca(2+) were involved in sprint-induced protection from ischemia-reperfusion-induced LV diastolic dysfunction.  相似文献   

12.
Forebrain ischemia was induced in Mongolian gerbils by bilateral occlusion of the common carotid arteries for 30 minutes. These animals do not have a complete circulus arteriosus Willisii. Mitochondria were prepared from the forebrain tissue at the end of the 30 minutes occlusion period as well as at different time points after the release of the occlusion. Tissue blood flow in the forebrain was also determined by measuring the brain tissue accumulation of 14C-iodoantipyrine. Tissue blood flow in the forebrain decreased from a control level of 1.43 +/- 0.03 ml/min/gr to 0.13 +/- 0.03 ml/min/gr by the 30th minute of ischemia, increased to 1.12 +/- 0.25 ml/min/gr after 5 minutes of reflow, but decreased again to 0.41 +/- 0.07 ml/min/gr after 1 1/2 hours of reflow. Oxygen consumption rate of mitochondria prepared from the forebrain (glutamate + malate as substrates in the presence of ADP) was 98 +/- 13 nmoles O2/min/mg protein in control animals, decreased to 61 +/- 9 nmoles O2/min/mg protein after 30 minutes of occlusion, recovered to 106 +/- 9 nmoles O2/min/mg protein during the first 30 minutes of reperfusion. During extended reperfusion, mitochondrial respiratory activity declined reaching 20 +/- 5 nmoles O2/min/mg protein after 5 1/2 hours of reperfusion. Respiratory control ratio of the mitochondria (relative increase of respiration upon addition of ADP) was 9.2 +/- 1.3 in control animals, 7.0 +/- 1.5 after 30 minutes of carotid occlusion, 9.0 +/- 1.2 after 30 minutes of reperfusion, and 5.8 +/- 0.8 after 5 1/2 hours of reperfusion. Superoxide dismutase activity of the forebrain mitochondria was 5.10 +/- 0.7 I.U./mg protein in control animals, decreased to 3.3 +/- 1.6 I.U./mg protein after 30 minutes of occlusion and remained at this level throughout the reperfusion period. These data confirm earlier reports that deterioration of mitochondrial function may contribute to the development of ischemic and post-ischemic brain tissue damage. It also appears possible that postischemic damage of mitochondrial function develops secondary to postischemic deterioration of tissue blood flow.  相似文献   

13.
We investigated mechanical function and exogenous fatty acid oxidation in neonatal pig hearts subjected to ischemia, followed by reperfusion. Isolated, isovolumically-beating hearts, from pigs 12 h to 2 days of age, were perfused with an erythrocyte-enriched (hematocrit approximately 15%) solution (37 degrees C). All hearts were studied for 30 min. with a perfusion pressure of 60 mmHg (pre-ischemia). One group of hearts (low-flow ischemia, N = 12) was then perfused for 30 min. with a perfusion pressure of approximately 12 mmHg. In the other group (no-flow ischemic arrest, N = 9), the perfusion pressure was zero for 30 min. Following ischemia in both groups, the perfusion pressure was restored to 60 mmHg for 40 min. (reperfusion). Pre-ischemia parameters for all hearts averaged: left ventricular peak systolic pressure, 99.0 +/- 2.0 mmHg; end diastolic pressure, 1.9 +/- 0.2 mmHg; coronary flow, 3.4 +/- 0.1 ml/min per g; myocardial oxygen consumption, 56.6 +/- 1.6 microliter/min per g and fatty acid oxidation, 33.4 +/- 1.4 nmol/min per g. During low-flow ischemia, hearts released lactate, and the corresponding parameters decreased to: 30.7 +/- 0.9 mmHg; 1.2 +/- 0.3 mmHg; 0.8 +/- 0.1 ml/min per g; 26.6 +/- 2.3 microliters/min per g and 12.9 +/- 1.1 nmol/min per g, respectively. Early in reperfusion in both groups, all parameters, except for fatty acid oxidation, exceeded pre-ischemia values, before recovering to near pre-ischemia values. Late in reperfusion, however, rates of fatty acid oxidation exceeded pre-ischemia rates by approximately 60%. Thus, the neonatal pig heart demonstrated similar recovery following 30 min of low-flow ischemia or no-flow ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

15.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

16.
Varga E  Nagy N  Lazar J  Czifra G  Bak I  Biro T  Tosaki A 《Life sciences》2004,75(20):2411-2423
We investigated the contribution of dexamethasone treatment on the recovery of postischemic cardiac function and the development of reperfusion-induced arrhythmias in ischemic/reperfused isolated rat hearts. Rats were treated with 2 mg/kg of intraperitoneal injection of dexamethasone, and 24 hours later, hearts were isolated according to the 'working' mode, perfused, and subjected to 30 min global ischemia followed by 120 min reperfusion. Cardiac function including heart rate, coronary flow, aortic flow, and left ventricular developed pressure were recorded. After 60 min and 120 min reperfusion, 2 mg/kg of dexamethasone significantly improved the postischemic recovery of aortic flow and left ventricular developed pressure from their control values of 10.7 +/- 0.3 ml/min and 10.5 +/- 0.3 kPa to 22.2 +/- 0.3 ml/min (p < 0.05) and 14.3 +/- 0.5 kPa (p < 0.05), 19.3 +/- 0.3 ml/min (p < 0.05) and 12.3 +/- 0.5 kPa (p < 0.05), respectively. Heart rate and coronary flow did not show a significant change in postischemic recovery after 60 or 120 min reperfusion. In rats treated with 0.5 mg/kg of actinomycin D injected i.v., one hour before the dexamethasone injection, suppressed the dexamethasone-induced cardiac protection. Electrocardiograms were monitored to determine the incidence of reperfusion-induced ventricular fibrillation. Dexamethasone pretreatment significantly reduces the occurrence of ventricular fibrillation. Cytochrome c release was also observed in the cytoplasm. The results suggest that the inhibition of cytochrome c release is involved in the dexamethasone-induced cardiac protection.  相似文献   

17.
Endogenous opioids are involved in ischemic preconditioning (IP) in several species. Whether or not opioids are important for IP and short-term myocardial hibernation (STMH) in pigs is currently unknown. In 34 enflurane-anesthetized pigs, the left anterior descending coronary artery was flow constantly perfused. Subendocardial blood flow (Endo), infarct size (IS; percent area at risk), and the free energy change of ATP hydrolysis (DeltaG) were determined. After 90-min severe ischemia and 120-min reperfusion, IS averaged 28.3 +/- 5.4% (means +/- SE) (n = 8; Endo: 0.047 +/- 0.009 ml. min(-1) x g(-1)). IP by 10-min ischemia and 15-min reperfusion reduced IS to 9.9 +/- 3.8% (P < 0.05, n = 8; Endo: 0.044 +/- 0.009 ml. min(-1) x g(-1)). After naloxone (1 mg/kg iv followed by 2 microg x kg(-1) x min(-1)), IS averaged 25.8 +/- 7.0% (n = 6; Endo: 0.039 +/- 0.008 ml x min(-1) x g(-1)) without and 24.7 +/- 4.7% (n = 6; Endo: 0.044 +/- 0.006 ml x min(-1) x g(-1)) with IP. At 5-min moderate ischemia in the presence of naloxone, Endo decreased from 0.90 +/- 0.07 to 0.28 +/- 0.03 ml x min(-1) x g(-1)and DeltaG decreased from -58.6 +/- 1.0 to -52.6 +/- 0.4 kJ/mol. Prolongation of ischemia to 90 min did not alter Endo, but DeltaG recovered toward control values (57.7 +/- 1.1 kJ/mol), and the myocardium remained viable. These responses are identical to those of nonnaloxone-treated pigs. Endogenous opioids are involved in IP but not in STMH in pigs.  相似文献   

18.
Previously, we demonstrated that ischemia induces mitochondrial damage and dysfunction that persist throughout reperfusion and impact negatively on postischemic functional recovery and cellular viability. We hypothesized that viable respiration-competent mitochondria, isolated from tissue unaffected by ischemia and then injected into the ischemic zone just before reperfusion, would enhance postischemic functional recovery and limit infarct size. New Zealand White rabbits (n = 52) were subjected to 30 min of equilibrium and 30 min of regional ischemia (RI) induced by snaring the left anterior descending coronary artery. At 29 min of RI, the RI zone was injected with vehicle (sham control and RI vehicle) or vehicle containing mitochondria (7.7 x 10(6) +/- 1.5 x 10(6)/ml) isolated from donor rabbit left ventricular tissue (RI-Mito). The snare was released at 30 min of RI, and the hearts were reperfused for 120 min. Our results show that left ventricular peak developed pressure and systolic shortening in RI-Mito hearts were significantly enhanced (P < 0.05 vs. RI-vehicle) to 75% and 83% of equilibrium value, respectively, at 120 min of reperfusion compared with 57% and 62%, respectively, in RI-vehicle hearts. Creatine kinase-MB, cardiac troponin I, and infarct size relative to area at risk were significantly decreased in RI-Mito compared with RI-vehicle hearts (P < 0.05). Confocal microscopy showed that injected mitochondria were present and viable after 120 min of reperfusion and were distributed from the epicardium to the subendocardium. These results demonstrate that viable respiration-competent mitochondria, isolated from tissue unaffected by ischemia and then injected into the ischemic zone just before reperfusion, significantly enhance postischemic functional recovery and cellular viability.  相似文献   

19.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

20.
During postischemic reperfusion, free radicals are produced and have deleterious effects in isolated rat hearts. We investigated whether melatonin (MEL) reduces the production of hydroxyl radical (*OH) in the effluent and aids in recovery of left ventricular (LV) function. Hearts were subjected to 30 min of ischemia followed by 30 min of reperfusion. Salicylic acid (SAL) was used as the probe for *OH, and its derivatives 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were quantified using HPLC. In addition, thiobarbituric acid reactive substances (TBARS) in the myocardium was measured. Plateaus in the measurement of 2,5- and 2,3-DHBA were seen from 3 to 8 min after reperfusion in each group. The group that received 100 microM MEL+ SAL had significantly reduced amounts of 2,5- and 2,3-DHBA by multiple folds, compared to the SAL group. TBARS was significantly decreased in the 100 microM MEL group (1.20+/-0.36 vs 1.85+/-0.10 micromol/g of drug-free group, p<0.001). More importantly, the 100 microM MEL group significantly recovered in LV function (LV developed pressure, +dp/dt, and -dp/dt; 63.0%, 60.3%, and 59.4% in the 100 microM MEL group; 30.2%, 29.7%, and 31.5% in the drug-free group, respectively; p<0.05). Duration of ventricular tachycardia or ventricular fibrillation significantly decreased in the 100 microM MEL group (100 microM MEL, 159+/-67 sec; drug-free, 1244+/-233 sec; p<0.05). As a result of scavenging *OH and reducing the extent of lipid peroxidation, MEL is an effective agent for protection against postischemic reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号