首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal ischemia-reperfusion commonly occurs in critically ill patients and may lead to the development of remote organ injury, frequently involving the lungs. In the present study, alveolar liquid clearance was studied in ventilated, anesthetized rats subjected to 45 min of intestinal ischemia followed by 3 h of reperfusion. An isosmolar 5% albumin solution was instilled into the lungs, and alveolar liquid clearance was measured from the increase in alveolar protein concentration as water was reabsorbed over 45 min. Intestinal ischemia-reperfusion resulted in a 76% increase in alveolar liquid clearance compared with the control value (P < 0.05). The stimulated alveolar liquid clearance seen after intestinal ischemia-reperfusion was not inhibited by propranolol, indicating stimulation through a noncatecholamine-dependent pathway. Intestinal ischemia-reperfusion did not result in increased intracellular cAMP levels. Amiloride inhibited similar fractions in animals subjected to ischemia-reperfusion and control animals. Administration of a neutralizing polyclonal anti-tumor necrosis factor-alpha antibody before induction of intestinal ischemia completely inhibited the increased alveolar liquid clearance observed after intestinal ischemia-reperfusion. In conclusion, our results suggest that intestinal ischemia-reperfusion in rats leads to stimulation of alveolar liquid clearance and that this stimulation is mediated, at least in part, by a tumor necrosis factor-alpha-dependent mechanism.  相似文献   

2.
Isoproterenol (Iso) infusion for 48 h in rats decreases the ability of beta-adrenoceptor (beta-AR) agonists to increase alveolar liquid clearance (ALC). An impairment in protein kinase A (PKA) function appears to be critical in producing the desensitized ALC response. To test this hypothesis, we used a novel protein delivery reagent (Chariot, Active Motif) to deliver either the PKA catalytic subunit or the PKA holoenzyme to the distal lung epithelium of Iso-infused rats (400 microg.kg(-1).h(-1), 48 h). After this infusion, ALC was measured by mass balance over 2 h. ALC in Iso-infused rats was 27.9% (SD 5.8) of instilled volume absorbed. Delivery of the catalytic PKA subunit to Iso-infused rats increased ALC to 47.7% (SD 8.9) (P < 0.05). ALC in Iso-infused rats delivered the inactive PKA holoenzyme [29.6% (SD 2.5)] was not increased above baseline values. Subsequent holoenzyme activation by intravenous infusion of the stable cAMP analog Sp-8-Bromo-cAMPS increased ALC to 41.7% (SD 8.8) (P < 0.05). Immunohistochemical localization of Chariot-delivered PKA revealed staining in the alveolar and distal airway epithelium. These data indicate that protein delivery reagents can be used to rapidly deliver biologically active proteins to the distal lung epithelium and that PKA desensitization may be an important rate-limiting event in the development of Iso-induced desensitization of the alveolar epithelial beta-AR signaling pathway.  相似文献   

3.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   

4.
Tumor necrosis factor (TNF)-alpha is released from alveolar macrophages after phagocytosis of mineral fibers. To determine whether TNF-alpha affects the binding of fibers to epithelial cells, we exposed rat tracheal explants to TNF-alpha or to culture medium alone, followed by a suspension of amosite asbestos or fiberglass (MMVF10). Loosely adherent fibers were removed from the surface with a standardized washing technique, and the number of bound fibers was determined by scanning electron microscopy. Increasing doses of TNF-alpha produced increases in fiber binding. This effect was abolished by an anti-TNF-alpha antibody, the proteasome inhibitor MG-132, and the nuclear factor (NF)-kappaB inhibitor pyrrolidine dithiocarbamate. Gel shift and Western blot analyses confirmed that TNF-alpha activated NF-kappaB and depleted IkappaB in this system and that these effects were prevented by MG-132 and pyrrolidine dithiocarbamate. These observations indicate that TNF-alpha increases epithelial fiber binding by a NF-kappaB-dependent mechanism. They also suggest that mineral particles may cause pathological lesions via an autocrine-like process in which the response evoked by particles, for example, macrophage TNF-alpha production, acts to enhance subsequent interactions of particles with tissue.  相似文献   

5.
Alveolar macrophages (AMs) are specialized tissue‐resident macrophages that orchestrate the immune responses to inhaled pathogens and maintain organ homeostasis of the lung. Dysregulation of AMs is associated with allergic inflammation and asthma. Here, we examined the role of a phosphoinositide kinase PIKfyve in AM development and function. Mice with conditionally deleted PIKfyve in macrophages have altered AM populations. PIKfyve deficiency results in a loss of AKT activation in response to GM‐CSF, a cytokine critical for AM development. Upon exposure to house dust mite extract, mutant mice display severe lung inflammation and allergic asthma accompanied by infiltration of eosinophils and lymphoid cells. Moreover, they have defects in production of retinoic acid and fail to support incorporation of Foxp3+ Treg cells in the lung, resulting in exacerbation of lung inflammation. Thus, PIKfyve plays a role in preventing excessive lung inflammation through regulating AM function.  相似文献   

6.
We investigated the importance of changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) for amiloride-sensitive alveolar fluid clearance (AFC) in late-gestational guinea pigs. Fetal guinea pigs of 61, 68, and 69 days (term) gestation were investigated under normal conditions and after oxytocin-induced preterm labor. AFC or alveolar fluid secretion was measured using an impermeable tracer technique. At 61 days gestation there was net secretion of fluid into the lungs, and at birth the lungs cleared 49 +/- 7% of the instilled fluid volume over 1 h. Induction of preterm labor with oxytocin induced AFC at 61 days gestation. When present, AFC was inhibited or reversed to net fluid secretion by amiloride (10(-3) M). Inhibition of membrane Ca(2+) channels by verapamil (10(-4) M) or depletion of intracellular Ca(2+) by thapsigargin (10(-5) M) reduced AFC when net AFC was evident. Amiloride lacked an inhibitory effect on AFC when instilled with verapamil or thapsigargin. The results indicate that AFC via amiloride-sensitive pathways develops during late gestation, and that inducing preterm labor precociously may activate such pathways. Our results suggest that Ca(2+) may act as a second messenger in mediating catecholamine-stimulated AFC.  相似文献   

7.
Nonselective cyclooxygenase (COX) inhibition during the development of allergic disease in a murine model causes an increase in type 2 cytokines and lung eosinophilia; however, the mechanisms responsible for this augmented allergen-induced inflammation have not been examined. Ab depletion of CD4 and CD8 cells revealed that the heightened allergic inflammation caused by COX inhibition was CD4, but not CD8, dependent. Allergen sensitization and airway challenge alone led to undetectable levels of IL-5 and IL-13 in the lungs of IL-4, IL-4Ralpha, and STAT6 knockout (KO) mice, but COX inhibition during the development of allergic inflammation resulted in wild-type levels of IL-5 and IL-13 and heightened airway eosinophilia in each of the three KO mice. These results indicate that the effect of COX inhibition was independent of signaling through IL-4, IL-4Ralpha, and STAT6. However, whereas COX inhibition increased IgE levels in allergic wild-type mice, IgE levels were undetectable in IL-4, IL-4Ralpha, and STAT6 KO mice, suggesting that IL-13 alone is not a switch factor for IgE synthesis in this model. These results illustrate the central role played by products derived from the COX pathway in the regulation of allergic immune responses.  相似文献   

8.
We previously demonstrated that 48-h isoproterenol (Iso) infusion in rats impaired the ability of beta-adrenoceptor (beta-AR) agonists to increase alveolar liquid clearance (ALC). In this study, we determined whether this impairment persisted over longer time periods by infusing 400 mug.kg(-1).h(-1) Iso by osmotic minipump for 24-144 h (n = 6-7/group). ALC in control rats was 19.0 +/- 2.4 (SD)% of instilled volume absorbed per hour. In Iso-infused rats, ALC was elevated at 24 h (34.9 +/- 2.4%) and decreased at 48 h (15.2 +/- 4.4%) and had recovered to 24 h values at 96 h (37.3 +/- 3.8%) and 144 h (35.2 +/- 3.3%). Plasma Iso concentrations remained elevated at all Iso infusion times. Peripheral lung beta(2)-AR expression exhibited a parallel time course, with a reduction in expression observed at 48 h, followed by an increase to 24 h values at 96 and 144 h. Propranolol prevented the increase in ALC observed at 96 and 144 h, indicating that the recovery in ALC was mediated by a recovery of beta-AR function and beta-AR signaling. ALC at 96 and 144 h could not be further increased by terbutaline, indicating that ALC was maximally stimulated. These data indicate that recovery of beta-AR-stimulated ALC can occur in the continued presence of Iso and is mediated by a recovery of the ability of the distal lung epithelium to respond to beta-AR stimulation.  相似文献   

9.
10.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

11.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

12.
13.
Receptors for advanced glycation end-products (RAGE) are multiligand cell surface receptors of the immunoglobin family expressed by epithelium and macrophages, and expression increases following exposure to cigarette smoke extract (CSE). The present study sought to characterize the proinflammatory contributions of RAGE expressed by alveolar macrophages (AMs) following CSE exposure. Acute exposure of mice to CSE via nasal instillation revealed diminished bronchoalveolar lavage (BAL) cellularity and fewer AMs in RAGE knockout (KO) mice compared with controls. Primary AMs were obtained from BAL, exposed to CSE in vitro, and analyzed. CSE significantly increased RAGE expression by wild-type AMs. Employing ELISAs, wild-type AMs exposed to CSE had increased levels of active Ras, a small GTPase that perpetuates proinflammatory signaling. Conversely, RAGE KO AMs had less Ras activation compared with wild-type AMs after exposure to CSE. In RAGE KO AMs, assessment of p38 MAPK and NF-κB, important intracellular signaling intermediates induced during an inflammatory response, revealed that CSE-induced inflammation may occur in part via RAGE signaling. Lastly, quantitative RT-PCR revealed that the expression of proinflammatory cytokines including TNF-α and IL-1β were detectably decreased in RAGE KO AMs exposed to CSE compared with CSE-exposed wild-type AMs. These results reveal that primary AMs orchestrate CSE-induced inflammation, at least in part, via RAGE-mediated mechanisms.  相似文献   

14.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

15.
Sodium absorption by an amiloride-sensitive channel is the main driving force of lung liquid clearance at birth and lung edema clearance in adulthood. In this study, we tested whether tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in several lung pathologies, could modulate sodium absorption in cultured alveolar epithelial cells. We found that TNF-alpha decreased the expression of the alpha-, beta-, and gamma-subunits of epithelial sodium channel (ENaC) mRNA to 36, 43, and 16% of the controls after 24-h treatment and reduced to 50% the amount of alpha-ENaC protein in these cells. There was no impact, however, on alpha(1) and beta(1) Na(+)-K(+)-ATPase mRNA expression. Amiloride-sensitive current and ouabain-sensitive Rb(+) uptake were reduced, respectively, to 28 and 39% of the controls. A strong correlation was found at different TNF-alpha concentrations between the decrease of amiloride-sensitive current and alpha-ENaC mRNA expression. All these data show that TNF-alpha, a proinflammatory cytokine present during lung infection, has a profound influence on the capacity of alveolar epithelial cells to transport sodium.  相似文献   

16.
Local TNF-alpha production in different organs may affect HIV replication and pathogenesis. Alveolar macrophages (AMs) obtained by bronchoalveolar lavage from asymptomatic HIV-seropositive and HIV-seronegative individuals did not spontaneously release TNF-alpha, but LPS stimulation of these cells significantly increased TNF-alpha production. We tested whether NF-kappa B affects TNF-alpha production by AMs using N-tosyl-l -phenylalanine chloromethylketone (TPCK) or N-benzoyl-l -tyrosine ethyl ester (BTEE), which inhibit the degradation of I kappa B, or tricyclodecan-9-yl-xanthogenate-potassium (D609), which inhibits phospholipase C. Alveolar macrophages were exposed to LPS alone and with the chemical protease inhibitors TPCK, BTEE, and D609. NF-kappa B DNA binding induced by LPS treatment of AMs was inhibited by TPCK, BTEE, and D609. These agents also inhibited TNF-alpha mRNA and TNF-alpha protein production. After 24 h, the levels of TNF-alpha mRNA reached equilibrium, as assessed by RT-PCR. The levels of NF-kappa B mRNA remained constant under all conditions. The levels of I kappa B-alpha mRNA were similar after 30, 60, and 180 min, but the I kappa B-beta mRNA concentration was initially low and increased over time under all conditions. I kappa B-alpha and I kappa B-beta protein production was not affected by the chemical protease inhibitors. Our data show that TNF-alpha production by LPS-stimulated AMs from asymptomatic HIV-seropositive and -seronegative individuals is regulated via the phospholipase C pathway and by NF-kappa B DNA binding activity without obvious changes in I kappa B-alpha or I kappa B-beta protein concentrations.  相似文献   

17.
GM-CSF plays an important role in inflammation by promoting the production, activation, and survival of granulocytes and macrophages. In this study, GM-CSF knockout (GM-CSF(-/-)) mice were used to investigate the role of GM-CSF in a model of allergic airway inflammation. In allergic GM-CSF(-/-) mice, eosinophil recruitment to the airways showed a striking pattern, with eosinophils present in perivascular areas, but almost completely absent in peribronchial areas, whereas in wild-type mice, eosinophil infiltration appeared in both areas. In the GM-CSF(-/-) mice, mucus production in the airways was also reduced, and eosinophil numbers were markedly reduced in the bronchoalveolar lavage (BAL)(3) fluid. IL-5 production was reduced in the lung tissue and BAL fluid of GM-CSF(-/-) mice, but IL-4 and IL-13 production, airway hyperresponsiveness, and serum IgE levels were not affected. The presence of eosinophils in perivascular but not peribronchial regions was suggestive of a cell migration defect in the airways of GM-CSF(-/-) mice. The CCR3 agonists CCL5 (RANTES) and CCL11 (eotaxin-1) were expressed at similar levels in GM-CSF(-/-) and wild-type mice. However, IFN-gamma mRNA and protein were increased in the lung tissue and BAL fluid in GM-CSF(-/-) mice, as were mRNA levels of the IFN-gamma-inducible chemokines CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-Tac). Interestingly, these IFN-gamma-inducible chemokines are natural antagonists of CCR3, suggesting that their overproduction in GM-CSF(-/-) mice contributes to the lack of airway eosinophils. These findings demonstrate distinctive abnormalities to a model of allergic asthma in the absence of GM-CSF.  相似文献   

18.
19.
The airway plays a vital role in allergic lung diseases by responding to inhaled allergens and initiating allergic inflammation. Various proinflammatory functions of the airway epithelium have been identified, but, equally important, anti-inflammatory mechanisms must also exist. We show in this study that syndecan-1, the major heparan sulfate proteoglycan of epithelial cells, attenuates allergic lung inflammation. Our results show that syndecan-1-null mice instilled with allergens exhibit exaggerated airway hyperresponsiveness, glycoprotein hypersecretion, eosinophilia, and lung IL-4 responses. However, administration of purified syndecan-1 ectodomains, but not ectodomain core proteins devoid of heparan sulfate, significantly inhibits these inflammatory responses. Furthermore, syndecan-1 ectodomains are shed into the airway when wild-type mice are intranasally instilled with several biochemically distinct inducers of allergic lung inflammation. Our results also show that syndecan-1 ectodomains bind to the CC chemokines (CCL7, CCL11, and CCL17) implicated in allergic diseases, inhibit CC chemokine-mediated T cell migration, and suppress allergen-induced accumulation of Th2 cells in the lung through their heparan sulfate chains. Together, these findings uncover an endogenous anti-inflammatory mechanism of the airway epithelium where syndecan-1 ectodomains attenuate allergic lung inflammation via suppression of CC chemokine-mediated Th2 cell recruitment to the lung.  相似文献   

20.
Chao BH  He X  Bischof JC 《Cryobiology》2004,49(1):10-27
Vascular injury is a major mechanism of cryosurgical destruction. The extent of vascular injury may be affected by the addition of molecular adjuvants. This study, in addition to determining the injury mechanism in the LNCaP Pro 5 human prostate cancer subline grown in a nude mouse, examined the effect of cytokine TNF-alpha on cryosurgery of an in vivo microvascular preparation (Dorsal Skin Flap Chamber). A comparison of injury data to a thermal model indicated that the minimum temperature after moderate cooling, thawing, and hold time required for causing necrosis was 3.5+/-6.9 degrees C in TNF-alpha-treated LNCaP Pro 5 tumor tissue (n=4) and -9.8+/-5.8 degrees C in TNF-alpha-treated normal skin of the nude mouse (n=4). Compared to tissues without TNF-alpha treatment, where the minimum temperature required for causing necrosis was -16.5+/-4.3 degrees C in LNCaP Pro 5 tumor tissue (n=8) and -24.4+/-7.0 degrees C in normal skin of the nude mouse (n=9), the results indicate the local use of TNF-alpha can dramatically increase the threshold temperature of cryo-destruction by more than 10 degrees C (p <0.01). These findings were consistent with the hypothesis that vascular-mediated injury is responsible for defining the edge of the cryolesion in microvascular-perfused tissue, and therefore pre-induced inflammation can augment cryoinjury. The local use of TNF-alpha to pre-inflame prostate cancer promises to increase both the ability of freezing to destroy cancer as well as improve the ability of ultrasound or other iceball-monitoring techniques to predict the outcome of the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号