首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fever response is blunted at near term. As the enzyme cyclooxygenase-2 (COX-2) plays a critical role in fever development, we measured its expression in rat hypothalamus during pregnancy and lactation. Western blot analysis revealed a 72-kDa COX-2-immunoreactive band in non-immune-challenged, pregnant rats at day 15 of pregnancy. In contrast, it was almost undetectable at near term and at lactation day 5. COX-2 was significantly induced at the 15th day of pregnancy and at the 5th lactating day after intraperitoneal lipopolysaccharide (50 microg/kg). However, this COX-2 induction was significantly reduced at near term compared with values before and after term. The protein levels of the EP3 receptor in the hypothalamus, one of the prostaglandin E(2) (PGE(2)) receptors suggested to be a key receptor for fever induction, were unaffected throughout the pregnancy and lactation in both non-immune-challenged and lipopolysaccharide-treated rats. These data suggest that suppression of fever at near term is associated with a significantly reduced induction of COX-2 by lipopolysaccharide, resulting in a reduced production of PGE(2). Altered expression of the EP3 receptor does not seem to be involved in this fever refractoriness at near term.  相似文献   

2.
Transforming growth factor-beta (TGF-beta), a pleiotropic cytokine, regulates cell proliferation, differentiation, and apoptosis, and plays a key role in development and tissue homeostasis. TGF-beta functions as an anti-inflammatory cytokine because it suppresses microglia and B-lymphocyte functions, as well as the production of proinflammatory cytokines. However, we previously demonstrated that the intracisternal administration of TGF-beta induces fever like that produced by proinflammatory cytokines. In this study, we investigated the mechanism of TGF-beta-induced fever. The intracisternal administration of TGF-beta increased body temperature in a dose-dependent manner. Pretreatment with cyclooxygenase-2 (COX-2)-selective inhibitor significantly suppressed TGF-beta-induced fever. COX-2 is known as one of the rate-limiting enzymes of the PGE(2) synthesis pathway, suggesting that fever induced by TGF-beta is COX-2 and PGE(2) dependent. TGF-beta increased PGE(2) levels in cerebrospinal fluid and increased the expression of COX-2 in the brain. Double immunostaining of COX-2 and von Willebrand factor (vWF, an endothelial cell marker) revealed that COX-2-expressing cells were mainly endothelial cells. Although not all COX-2-immunoreactive cells express TGF-beta receptor, some COX-2-immunoreactive cells express activin receptor-like kinase-1 (ALK-1, an endothelial cell-specific TGF-beta receptor), suggesting that TGF-beta directly or indirectly acts on endothelial cells to induce COX-2 expression. These findings suggest a novel function of TGF-beta as a proinflammatory cytokine in the central nervous system.  相似文献   

3.
Endothelial cells line the vasculature and, after mechanical denudation during invasive procedures or cellular loss from natural causes, migrate to reestablish a confluent monolayer. We find confluent monolayers of human umbilical vein endothelial cells were quiescent and expressed low levels of cyclooxygenase-2, but expressed cyclooxygenase-2 at levels comparable with cytokine-stimulated cells when present in a subconfluent culture. Mechanically wounding endothelial cell monolayers stimulated rapid cyclooxygenase-2 expression that increased with the level of wounding. Cyclooxygenase-2 re-expression occurred throughout the culture, suggesting signaling from cells proximal to the wound to distal cells. Media from wounded monolayers stimulated cyclooxygenase-2 expression in confluent monolayers, which correlated with the level of wounding of the donor monolayer. Wounded monolayers and cells in subconfluent cultures secreted enhanced levels of prostaglandin (PG) E(2) that depended on cyclooxygenase-2 activity, and PGE(2) stimulated cyclooxygenase-2 expression in confluent endothelial cell monolayers. Cells from subconfluent monolayers migrated through filters more readily than those from confluent monolayers, and the cyclooxygenase-2-selective inhibitor NS-398 suppressed migration. Adding PGE(2) to NS-398-treated cells augmented migration. Endothelial cells also migrated into mechanically denuded areas of confluent monolayers, and this too was suppressed by NS-398. We conclude that endothelial cells not in contact with neighboring cells express cyclooxygenase-2 that results in enhanced release of PGE(2), and that this autocrine and paracrine loop enhances endothelial cell migration to cover denuded areas of the endothelium.  相似文献   

4.
5.
6.
Bacterial lipopolysaccharide (LPS) is recognized by several receptors, including the toll-like receptor (TLR) 4, on various cells. Among many biological responses to LPS is fever, an often polyphasic rise in body temperature that is thought to be mediated by prostaglandin (PG) E2. Which receptors on which cells are linked to fever production is unknown. It is also unknown which cells produce PGE2 that triggers the earliest (first) phase of fever. Two recent studies from our group answer these questions. In the first one, we studied LPS-induced fever in mouse chimeras selectively lacking the TLR4 in hematopoietic or nonhematopoietic cells. We found that the first phase of fever is triggered via the TLR4 on hematopoietic cells. In the second study, we investigated LPS fever in rats. We found that the number of cells expressing cyclooxygenase (COX)-2, a PGE2-synthesizing enzyme, surged at the onset of fever in the lung and liver (but not in the brain), and that most of these cells were macrophages. Because LPS-induced PGE2 production in macrophages is TLR4-dependent, it is tempting to speculate that the TLR4-bearing, bone marrow-derived cells implicated in fever pathogenesis by the first study are the same as the COX-2-positive macrophages identified in the second study. Hence, pulmonary and hepatic macrophages that recognize LPS via the TLR4 and rapidly produce PGE2 are likely triggers of the fever response.  相似文献   

7.
Modification of endogenous eicosanoid synthesis by dietary n-3 fatty acid supplementation reduces febrile responses, but the mechanisms underlying these effects in vivo have not been determined. In the present study, local inflammation was induced by intramuscular injection ofturpentine in rats fed control or n-3 supplemented diets for 8-9 weeks. In animals fed the control diet, turpentine induced fever, hypermetabolism, marked local inflammation (oedema), increased plasma IL-6 concentrations and raised cerebrospinal fluid (CSF) concentrations of PGE2. N-3 fatty acid supplementation significantly inhibited the rise in CSF PGE2, fever and hypermetaboHsm induced by turpentine. Local inflammation and increased plasma IL-6 concentrations were not affected by n-3 supplementation. These findings suggest that modification of dietary fat intake inhibits fever via reduced release of prostaglandins, probably within the brain, but does not affect the local or afferent signals involved in fever generation.  相似文献   

8.
In young adult females, estrogen treatment suppresses the cerebrovascular inflammatory response; this is mediated in part via NF-kappaB, a key regulator of inflammatory genes. To examine whether age modifies effects of estrogen on vascular inflammation in the brain, female rats, 3 and 12 mo of age, were ovariectomized; half were treated with estrogen for 4 wk. Cerebral blood vessels were isolated from the animals at 4 and 13 mo of age. Inflammation was induced by LPS, either injected in vivo or incubated with isolated vessels ex vivo. Basal levels of cytoplasmic NF-kappaB were significantly higher in cerebral vessels of young rats, but the ratio of nuclear to cytoplasmic levels was greater in middle-aged animals. LPS exposure increased nuclear NF-kappaB DNA binding activity, protein levels of inducible nitric oxide synthase and cyclooxygenase-2, and production of nitric oxide and PGE(2) in cerebral vessels. All effects of LPS were markedly greater in vessels from the older animals. Estrogen significantly inhibited the LPS-induced increase in NF-kappaB DNA binding activity in cerebral vessels from animals at both ages. In 4-mo-old rats, estrogen also significantly suppressed LPS induction of inducible nitric oxide synthase and cyclooxygenase-2 proteins, as well as production of nitric oxide and PGE(2). In contrast, in 13-mo-old females, estrogen did not significantly affect these indexes of cerebrovascular inflammation. Thus the protective, anti-inflammatory effect of estrogen on cerebral blood vessels that is observed in young adults may be attenuated in aged animals, which exhibit a greater overall cerebrovascular response to inflammatory stimuli.  相似文献   

9.
10.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

11.
Pro-inflammatory pathways participate in the pathogenesis of atherosclerosis. However, the role of endogenous anti-inflammatory pathways in atheroma has received much less attention. Therefore, using cDNA microarrays, we screened for genes regulated by prostaglandin E(2) (PGE(2)), a potential endogenous anti-inflammatory mediator, in lipopolysaccharide (LPS)-treated human macrophages (MPhi). PGE(2) (50 nm) attenuated LPS-induced mRNA and protein expression of chemokines including monocyte chemoattractant protein-1, interleukin-8, macrophage inflammatory protein-1alpha and -1beta, and interferon-inducible protein-10. PGE(2) also inhibited the tumor necrosis factor-alpha-, interferon-gamma-, and interleukin-1beta-mediated expression of these chemokines. In contrast to the case of MPhi, PGE(2) did not suppress chemokine expression in human endothelial and smooth muscle cells (SMC) treated with LPS and pro-inflammatory cytokines. To assess the potential paracrine effect of endogenous PGE(2) on macrophage-derived chemokine production, we co-cultured MPhi with SMC in the presence of LPS. In these co-cultures, cyclooxygenase-2-dependent PGE(2) production exceeded that in the mono-cultures, and MIP-1beta declined significantly compared with MPhi cultured without SMC. We further documented prominent expression of the PGE(2) receptor EP4 in MPhi in both culture and human atheroma. Moreover, a selective EP4 antagonist completely reversed PGE(2)-mediated suppression of chemokine production. Thus, endogenous PGE(2) may modulate inflammation during atherogenesis and other inflammatory diseases by suppressing macrophage-derived chemokine production via the EP4 receptor.  相似文献   

12.
I Ramzan  V DeDonato 《Life sciences》1988,42(5):491-495
The purpose of this investigation was to determine whether the neurotoxicity of theophylline is altered in advanced pregnancy. Sprague-Dawley rats that were 20 days pregnant and nonpregnant rats of the same age and strain received infusions of aminophylline until onset of maximal seizures which occurred after 28 and 30 minutes respectively. Theophylline concentrations at this endpoint in serum (total) and CSF were similar but serum (free) and brain concentrations were slightly different in pregnant rats. Theophylline serum protein binding determined by equilibrium dialysis was lower in pregnant rats. Fetal serum concentrations at onset of seizures in the mother were similar to maternal brain and CSF concentrations and correlated significantly with the former. It is concluded that advanced pregnancy has a negligible effect on the neurotoxic response to theophylline in rats.  相似文献   

13.
Immune cells are known to express specific recognition molecules for cell surface glycans. However, mechanisms involved in glycan-mediated cell-cell interactions in mucosal immunity have largely been left unaccounted for. We found that several glycans preferentially expressed in nonmalignant colonic epithelial cells serve as ligands for sialic acid-binding Ig-like lectins (siglecs), the immunosuppressive carbohydrate-recognition receptors carried by immune cells. The siglec ligand glycans in normal colonic epithelial cells included disialyl Lewis(a), which was found to have binding activity to both siglec-7 and -9, and sialyl 6-sulfo Lewis(x), which exhibited significant binding to siglec-7. Expression of these siglec-7/-9 ligands was impaired upon carcinogenesis, and they were replaced by cancer-associated glycans sialyl Lewis(a) and sialyl Lewis(x), which have no siglec ligand activity. When we characterized immune cells expressing siglecs in colonic lamina propriae by flow cytometry and confocal microscopy, the majority of colonic stromal immune cells expressing siglec-7/-9 turned out to be resident macrophages characterized by low expression of CD14/CD89 and high expression of CD68/CD163. A minor subpopulation of CD8(+) T lymphocytes also expressed siglec-7/-9. Siglec-7/-9 ligation suppressed LPS-induced cyclooxygenase-2 expression and PGE(2) production by macrophages. These results suggest that normal glycans of epithelial cells exert a suppressive effect on cyclooxygenase-2 expression by resident macrophages, thus maintaining immunological homeostasis in colonic mucosal membranes. Our results also imply that loss of immunosuppressive glycans by impaired glycosylation during colonic carcinogenesis enhances inflammatory mediator production.  相似文献   

14.
PGE(2) has been known to suppress Th1 responses. We studied the difference in strains of mice in PGE(2) production by macrophages and its relation to Th1 activation. Macrophages from BALB/c mice produced greater amounts of PGE(2) than those from any other strains of mice, including C57BL/6, after LPS stimulation. In accordance with the amount of PGE(2) produced, macrophage-derived IL-12 and T cell-derived IFN-gamma production were more strongly suppressed in BALB/c macrophages than in C57BL/6 macrophages. When macrophages were treated with indomethacin or EP4 antagonist, Th1 cytokines were more markedly increased in cells from BALB/c mice than in those from C57BL/6 mice. Although cyclooxygenase-2 was expressed similarly after LPS stimulation in these mouse strains, the release of arachidonic acid and the expression of type V secretory phospholipase A(2) mRNA were greater in BALB/c macrophages. However, exogenous addition of arachidonic acid did not reverse the lower production of PGE(2) by C57BL/6 macrophages. The expression of microsomal PGE synthase, a final enzyme of PGE(2) synthesis, was also greater in BALB/c macrophages. These results indicate that the greater production of PGE(2) by macrophages, which is regulated by secretory phospholipase A(2) and microsomal PGE synthase but not by cyclooxygenase-2, is related to the suppression of Th1 cytokine production in BALB/c mice.  相似文献   

15.
The effects of prostaglandin E(2) (PGE(2)) on the parameters for proliferation and differentiation were studied in calvarial osteoblast-like cells isolated from rats of various ages. In cells not treated with PGE(2), it was found that mineralized bone nodule (BN) formation, alkaline phosphatase (ALP) activity, and the incorporation rate of [(3)H]thymidine into the cells sharply decreased with the age of the cell donor at 6-50 weeks and then remained at a relatively constant level up to 120 weeks. Before studying the effects of PGE(2) on these parameters, we determined the change in the levels of PGE(2) produced by the untreated cells during the culture period and found that the endogenous PGE(2) reached a maximum on the 4th day of the culture, regardless of the cell donor age, followed by a sharp decrease. The endogenous production was blocked by pretreatment with a cyclooxygenase-2 (COX-2) inhibitor, NS-398, indicating the generation of PGE(2) through a COX-2 pathway. The area of BN was effectively suppressed by NS-398 in the cells from 10- to 35-week-old rats, whereas it was enhanced in the cells from 90- to 120-week-old rats. Treatment with PGE(2 )markedly increased the BN formation and the ALP activity in the cells from 4- to 35-week-old rats (defined as young rats). By contrast, PGE(2) decreased [(3)H]thymidine incorporation into the cells from young rats. The area of BN and the ALP activity decreased significantly, whereas [(3)H]thymidine incorporation into the cells increased by 60-80% in the cells of 80- to 120-week-old rats (defined as aged rats). The stimulatory effects on the cell differentiation and the inhibitory effect on the proliferation in the cells from young rats was mimicked by an EP(1) agonist, 17-phenyl-omega-trinor PGE(2), while an EP(2)/EP(4) agonist, 11-deoxy-PGE(1) and an adenylate cyclase activator, forskolin suppressed the differentiation and enhanced the proliferation regardless of the cell donor age. PGE(2), 11-deoxy-PGE(1) and forskolin, but not 17-phenyl-omega-trinor PGE(2) increased cyclic adenosine monophosphate (cAMP) production. Generation of inositol 1, 4,5-triphosphate (IP(3)) was stimulated by 17-phenyl-omega-trinor PGE(2) or PGE(2), but not by 11-deoxy-PGE(1) or forskolin increased cAMP production in the cells from young rats. By contrast, PGE(2 )had little effect on IP(3 )generation in aged rats. From the overall results, we concluded that PGE(2) exerts stimulatory and inhibitory effects on differentiation through the EP(1)-IP(3) pathway and EP(2)/EP(4)-cAMP pathway, respectively, in the cells from young rats. The EP(1)-IP(3) pathway seems to be inactive in the cells from aged rats.  相似文献   

16.
The objective of this study was to test the hypothesis that intrauterine administration of prostaglandin E(2) (PGE(2)) or estradiol-17beta (E-17beta) would prolong CL function in nonpregnant mares. Nonpregnant mares were continuously infused with 240 mug/d of PGE(2), 6 mug/d of E-17beta, or vehicle (sham-treated) on Days 10 to 16 post ovulation (ovulation = Day 0), using osmotic minipumps surgically placed into the uterine lumen on Day 10 (n = 11 per group). Nonpregnant and pregnant mares served as negative and positive controls, respectively (n = 11 per group). Mares were defined as having prolonged CL function if plasma progesterone remained > 2.5 ng/ml and if ovulation did not occur on Days 9 to 30. Corpus luteal function was prolonged until Day 30 in 1 11 nonpregnant mares, 4 11 sham-treated mares, 6 11 E-17beta-treated mares, 8 11 PGE(2)-treated mares, and 11 11 pregnant mares. The incidence of prolonged CL function was similar (P=0.16) in the sham-treated and nonpregnant mares. The hypothesis that PGE(2) would prolong CL function in nonpregnant mares was supported, since the incidence of prolonged CL function was higher (P=0.003) in PGE(2)-treated versus nonpregnant mares, tended to be higher (P=0.09) in PGE(2)-versus sham-treated mares, and was not lower (P=0.11) in PGE(2)-treated versus pregnant mares. The hypothesis that E-17beta would prolong CL function in nonpregnant mares was not supported, since the incidence of prolonged CL function was not higher (P=0.34) in E-17beta-versus sham-treated mares, and was lower (P=0.02) in E-17beta-treated versus pregnant mares. These results demonstrate that intrauterine administration of a pharmacologic dose of PGE(2) initiated prolonged CL function in nonpregnant mares. Further experiments are needed to confirm the role of conceptus secretion of PGE(2) in CL maintenance, and to determine the mechanism of action of PGE(2) within the equine reproductive tract.  相似文献   

17.
Pathological conditions and pro-inflammatory stimuli in the brain induce cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism mediating the production of prostanoids that, among other actions, have strong vasoactive properties. Although low basal cerebral COX-2 expression has been reported, COX-2 is strongly induced by pro-inflammatory challenges, whereas COX-1 is constitutively expressed. However, the contribution of these enzymes in prostanoid formation varies depending on the stimuli and cell type. Astrocyte feet surround cerebral microvessels and release molecules that can trigger vascular responses. Here, we investigate the regulation of COX-2 induction and its role in prostanoid generation after a pro-inflammatory challenge with the bacterial lipopolysaccharide (LPS) in astroglia. Intracerebral administration of LPS in rodents induced strong COX-2 expression mainly in astroglia and microglia, whereas COX-1 expression was predominant in microglia and did not increase. In cultured astrocytes, LPS strongly induced COX-2 and microsomal prostaglandin-E(2) (PGE(2)) synthase-1, mediated by the MyD88-dependent NFκB pathway and influenced by mitogen-activated protein kinase pathways. Studies in COX-deficient cells and using COX inhibitors demonstrated that COX-2 mediated the high production of PGE(2) and, to a lesser extent, other prostanoids after LPS. In contrast, LPS down-regulated COX-1 in an MyD88-dependent fashion, and COX-1 deficiency increased PGE(2) production after LPS. The results show that astrocytes respond to LPS by a COX-2-dependent production of prostanoids, mainly vasoactive PGE(2), and suggest that the coordinated down-regulation of COX-1 facilitates PGE(2) production after TLR-4 activation. These effects might induce cerebral blood flow responses to brain inflammation.  相似文献   

18.
VEGF is a highly specific stimulator of endothelial cells and may play an important role in angiogenesis in the process of tissue regeneration. We previously showed that cyclooxygenase-2 (COX-2) expressed in mesenchymal cells of the ulcer bed is involved in the ulcer repair process. To clarify the role of COX-2 in angiogenesis during gastric ulcer healing, we investigated the relation between COX-2 expression and VEGF production in human gastric fibroblasts in vivo and in vitro. Gastric fibroblasts were cultured in RPMI 1640 with and without IL-1alpha or IL-1beta in the presence or absence of NS-398, a selective COX-2 inhibitor. Supernatant VEGF and PGE(2) concentrations were measured by enzyme-linked immunosorbent assay. COX-2 expression in fibroblasts was determined by Western blot analysis. VEGF and COX-2 expression in surgical resections of human gastric ulcer tissue was examined immunohistochemically. IL-1 dose dependently enhanced VEGF release in cultured gastric fibroblasts after a 24-h stimulation. IL-1 also stimulated PGE(2) production in gastric fibroblasts via COX-2 induction. NS-398 significantly suppressed VEGF and PGE(2) release from IL-1-stimulated gastric fibroblasts; concurrent addition of PGE(2) restored NS-398-inhibited VEGF release. COX-2 and VEGF immunoreactivity were colocalized in fibroblast-like cells in the ulcer bed of gastric tissues. These results suggest that COX-2 plays a key role in VEGF production in gastric fibroblasts stimulated by IL-1 in vitro and that angiogenesis induced by the COX-2-VEGF pathway might be involved in gastric ulcer healing.  相似文献   

19.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible protein recently shown to be an important source of inflammatory PGE2. Here we have used mPGES-1 wild type, heterozygote, and null mice to assess the impact of reduction or absence mPGES-1 protein on the production of PGE2 and other prostaglandins in lipopolysaccharide (LPS)-treated macrophages and mice. Thioglycollate-elicited peritoneal macrophages with mPGES-1 deficiency were found to lose their ability to produce PGE2 upon LPS stimulation. Resident mPGES-1(-/-) peritoneal macrophages exhibited severely impaired PGE2-releasing activity but retained some LPS-inducible PGE2 production capacity. Both macrophage types showed a 50% decrease in PGE2 production with removal of one copy of the mPGES-1 gene. In vivo, mPGES-1 deletion abolished the LPS-stimulated production of PGE2 in spleen, kidney, and brain. Surprisingly, lack of mPGES-1 activity resulted in an 80-90% decrease in basal, cyclooxygenase-1 (COX-1)-dependent PGE2 production in stomach and spleen, and a 50% reduction in brain and kidney. Other prostaglandins (thromboxane B2, PGD2, PGF(2alpha), and 6-keto-PGF(1alpha)) were significantly elevated in stomachs of mPGES-1-null mice but not in other tissues. Examination of mRNA for several terminal prostaglandin synthases did not reveal changes in expression levels associated with mPGES-1 deficiency, indicating that gastric prostaglandin changes may be due to shunting of cyclooxygenase products to other terminal synthases. These data demonstrate for the first time a dual role for mPGES-1 in both inflammatory and COX-1-mediated PGE2 production and suggest an interdependence of prostanoid production with tissue-specific alterations of prostaglandin levels in the absence of mPGES-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号