首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antigen induces murine bronchial hyperreactivity (BHR), inflammation, mucus accumulation, and airway remodeling. To investigate whether leukotrienes (LT) mediate the effects of antigen [ovalbumin (Ova)], we studied 5-lipoxygenase (5-LO) expression in immunized BP2 mice and blocked LT synthesis with the 5-LO inhibitor zileuton or antagonized their effects with receptor antagonists [cysteinyl leukotriene (Cys-LT)-ra MK-571, LY-171883; LTB4-ra PH-163]. Cys-LT content increased in the bronchoalveolar lavage fluid (BALF) as early as 15 min after the intratracheal instillation of Ova. Zileuton inhibited LT release in the BALF and eosinophil recruitment in the lungs, and dose dependently reduced BHR, mucus accumulation, and remodeling, as did the LT-ra. Thus LT, released just after antigen challenge, might constitute the first step in accounting for the effects of Ova. Because mucus accumulation is regulated via the EGF receptor (EGFR), which is also implicated in the effects of LT, we studied this pathway with AG-1478, an EGFR tyrosine kinase inhibitor given at 0.5, 4, and 20 mg/kg. AG-1478 inhibited BHR, inflammation, and lung remodeling induced by Ova or by molecules themselves generated by Ova, such as LT, IL-13, and monocyte chemoattractant protein-1, which promote identical effects, suggesting the involvement of the EGFR pathway in the asthma-like syndrome observed.  相似文献   

2.
The detection of a viral infection by pattern recognition receptors (PAMPs) is an integral part of antiviral immunity. In these studies we have investigated the role of TLR3, which recognizes dsRNA, in Respiratory Syncytial virus (RSV) infection using B6 background mice with a TLR3 deletion. Although we observed no changes in viral growth, we did find that TLR3-/- mice demonstrated significant increases in mucus production in the airways of RSV-infected mice. The qualitative assessment was observed by examining differentially stained lungs, followed by immunohistochemical staining for gob5, a mucus-associated protein. The histopathologic observations were verified using quantitative gene expression analyses examining gob5 gene expression. Changes in pulmonary mucus production were accompanied by an increase in pulmonary IL-13 as well as IL-5 expression and eosinophils in the airways of TLR3-/- mice. Examining leukocytes in the airway indicated an accumulation of eosinophils in TLR3-/- mice, but not wild-type mice, after RSV infection. Isolated lung draining lymph node cells from TLR3-/- mice produced significant increases in Th2-type cytokines, IL-5, and IL-13, compared with wild-type TLR3+/+ mice only after RSV infection. To demonstrate a causative link, we depleted TLR3-/- mice of IL-13 during RSV infection and found that mucus and gob5 expression in the lungs was attenuated. Together, these studies highlight that although TLR3 may not be required for viral clearance, it is necessary to maintain the proper immune environment in the lung to avoid developing pathologic symptoms of disease.  相似文献   

3.
IL-13 is a major stimulator of inflammation and tissue remodeling at sites of Th2 inflammation. In Th2-dominant inflammatory disorders such as asthma, IL-11 is simultaneously induced. However, the relationship(s) between IL-11 and IL-13 in these responses has not been defined, and the role(s) of IL-11 in the genesis of the tissue effects of IL-13 has not been evaluated. We hypothesized that IL-11, signaling via the IL-11Ralpha-gp130 receptor complex, plays a key role in IL-13-induced tissue responses. To test this hypothesis we compared the expression of IL-11, IL-11Ralpha, and gp130 in lungs from wild-type mice and transgenic mice in which IL-13 was overexpressed in a lung-specific fashion. We simultaneously characterized the effects of a null mutation of IL-11Ralpha on the tissue effects of transgenic IL-13. These studies demonstrate that IL-13 is a potent stimulator of IL-11 and IL-11Ralpha. They also demonstrate that IL-13 is a potent stimulator of inflammation, fibrosis, hyaluronic acid accumulation, myofibroblast accumulation, alveolar remodeling, mucus metaplasia, and respiratory failure and death in mice with wild-type IL-11Ralpha loci and that these alterations are ameliorated in the absence of IL-11Ralpha. Lastly, they provide insight into the mechanisms of these processes by demonstrating that IL-13 stimulates CC chemokines, matrix metalloproteinases, mucin genes, and gob-5 and stimulates and activates TGF-beta1 via IL-11Ralpha-dependent pathways. When viewed in combination, these studies demonstrate that IL-11Ralpha plays a key role in the pathogenesis of IL-13-induced inflammation and remodeling.  相似文献   

4.
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine greater than cysteinyl-LT greater than PGI2 greater than LTB4 greater than PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.  相似文献   

5.
IL-5 is present in the lung and in the circulation following allergenic challenges in humans and in animals, but its role in bronchopulmonary hyperreactivity (BHR) and lung and bronchoalveolar lavage fluid (BALF) eosinophilia remains unclear. Because compartmentalization of IL-5 is recognized, the anti-IL-5 monoclonal antibody TRFK-5 or its isotype control GL113 were delivered selectively intranasally (i.n.) and/or intravenously (i.v.) before the prior i.n. challenge with 10 mug OVA in BALB/c and BP2 "Biozzi" mice immunized according to optimized protocols with read-outs taken 24 h later. IL-5 in the BALF was suppressed by i.n. TRFK-5, whereas its production persisted in the serum. Conversely, i.v. TRFK-5 suppressed IL-5 in the serum but not in the BALF. IL-5 was suppressed in conditioned medium from lung explants from mice treated with i.n. TRFK-5, which did not affect the other Th2 cytokines, IL-4 and IL-13. IL-5 is thus present in the alveolar, pulmonary and circulatory compartments following an i.n. allergenic challenge. When specific anti-IL-5 antibodies were delivered by the same i.n. route, BALF eosinophilia was markedly reduced, whereas BHR and lung eosinophil sequestration persisted totally or mostly, in both strains. The passage of eosinophils from lungs to alveoli depends on IL-5 released into the BALF, but not into circulation, whereas their lung sequestration and BHR are mostly IL-5-independent. IL-5 alone does not account for the complexities of BHR or of eosinophil tissue trapping, and lung-targeted immunobiologicals should be delivered into the appropriate compartment in order to assess the role of specific mediators in experimental airways/lung allergy.  相似文献   

6.
Exaggerated levels of IL-13 and leukotriene (LT) pathway activation frequently coexist at sites of Th2 inflammation and in tissue fibrotic responses. However, the relationship(s) between the IL-13 and LTs in these responses have not been defined. We hypothesized that the 5-lipoxygenase (5-LO) pathway of LT metabolism plays an important role in the pathogenesis of IL-13-induced chronic inflammation and remodeling. To test this hypothesis, we evaluated the effects of IL-13 on components of the 5-LO metabolic and activation pathways. We also compared the effects of transgenic IL-13 in C57BL/6 mice with wild-type and null 5-LO genetic loci. These studies demonstrate that IL-13 increases the levels of mRNA encoding cytosolic phospholipase A(2), LTA(4) hydrolase, and 5-LO-activating protein without altering the expression of 5-LO, LTC(4) synthase, LTB(4) receptors 1 and 2, and cysteinyl-LT receptors 1 and 2. They also demonstrate that this activation is associated with the enhanced accumulation of LTB(4) but not of cysteinyl-LTs. Furthermore, they demonstrate that this stimulation plays a critical role in the pathogenesis of IL-13-induced inflammation, tissue fibrosis, and respiratory failure-induced death while inhibiting alveolar remodeling. Lastly, mechanistic insights are provided by demonstrating that IL-13-induced 5-LO activation is required for optimal stimulation and activation of TGF-beta(1) and the inhibition of matrix metalloproteinase-12. When viewed in combination, these studies demonstrate that 5-LO plays an important role in IL-13-induced inflammation and remodeling.  相似文献   

7.

Background

Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies.

Methodology/Principal Findings

Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects.

Conclusions

These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.  相似文献   

8.
Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease.  相似文献   

9.
Experiments to investigate the fate of intravascularly administered leukotriene (LT) A4, an unstable intermediate of LT generation, were performed in isolated, ventilated, and blood-free perfused rabbit lungs. LT extracted from the lung effluent were separated by different reverse phase and straight phase HPLC procedures as methylated and nonmethylated compounds. Identity of eluting LT was confirmed by UV spectrum analysis and immunoreactivity. Pulmonary artery injection of 75 to 300 nmol of LTA4 resulted in the rapid appearance of cysteinyl-LT as well as LTB4 in the recirculating perfusate. The yield of these enzymatically generated LTA4 metabolites vs non-enzymatic hydrolysis products (6-trans-LTB4, 5-trans-epi-LTB4, 5,6-dihydroxyeicosatetraenoic acids) ranged above 90%. Experiments with application of tritiated LTA4 showed exclusive origin of the detected LT from the exogenously applied precursor. The time course of cysteinyl-LT appearance in the perfusate suggested metabolism of LTC4 via LTD4 to LTE4, whereas there was no evidence for LTB4 omega-oxidation. In the dose range of LTA4 used, the enzymatic conversion of this LT precursor did not approach saturation. Collectively, these data indicate that the intact pulmonary vasculature contains a hitherto not described capacity for enzymatic conversion of intravascularly offered LTA4 to both cysteinyl-LT and LTB4. This may be of biological significance for a putative transcellular biosynthesis of LT in the pulmonary microcirculation upon contact with LTA4 feeder cells, such as activated granulocytes.  相似文献   

10.
To address the complex chronic effector properties of interleukin (IL)-10, we generated transgenic mice in which IL-10 was overexpressed in the lung. In these mice, IL-10 inhibited endotoxin-induced tumor necrosis factor production and neutrophil accumulation. IL-10 also caused mucus metaplasia, B and T cell-rich inflammation, and subepithelial fibrosis and augmented the levels of mRNA encoding Gob-5, mucins, and IL-13. In mice bred to have null mutations of IL-13, IL-4R(alpha), or STAT-6, transgenic IL-10 did not induce mucus metaplasia but did induce inflammation and fibrosis. IL-10 was also a critical mucin regulator of virus-induced mucus metaplasia. Thus, IL-10, although inhibiting lipopolysaccharide-induced inflammation, also causes mucus metaplasia, tissue inflammation, and airway fibrosis. These responses are mediated by multiple mechanisms with mucus metaplasia being dependent on and the inflammation and fibrosis being independent of an IL-13/IL-4R(alpha)/STAT-6 activation pathway.  相似文献   

11.
IL-13 stimulates inflammatory and remodeling responses and contributes to the pathogenesis of human airways disorders. To further understand the cellular and molecular events that mediate these responses, we characterized the effects of IL-13 on monocyte chemotactic proteins (MCPs) and compared the tissue effects of transgenic IL-13 in mice with wild-type (+/+) and null (-/-) CCR2 loci. Transgenic IL-13 was a potent stimulator of MCP-1, -2, -3, and -5. This stimulation was not specific for MCPs because macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, MIP-3alpha, thymus- and activation-regulated chemokine, thymus-expressed chemokine, eotaxin, eotaxin 2, macrophage-derived chemokines, and C10 were also induced. The ability of IL-13 to increase lung size, alveolar size, and lung compliance, to stimulate pulmonary inflammation, hyaluronic acid accumulation, and tissue fibrosis, and to cause respiratory failure and death were markedly decreased, whereas mucus metaplasia was not altered in CCR2(-/-) mice. CCR2 deficiency did not decrease the basal or IL-13-stimulated expression of target matrix metalloproteinases or cathepsins but did increase the levels of mRNA encoding alpha1-antitrypsin, tissue inhibitor of metalloproteinase-1, -2, and -4, and secretory leukocyte proteinase inhibitor. In addition, the levels of bioactive and total TGF-beta(1) were decreased in lavage fluids from IL-13 transgenic mice with -/- CCR2 loci. These studies demonstrate that IL-13 is a potent stimulator of MCPs and other CC chemokines and document the importance of MCP-CCR2 signaling in the pathogenesis of the IL-13-induced pulmonary phenotype.  相似文献   

12.
Endogenous regulation of the acute inflammatory response   总被引:2,自引:0,他引:2  
The acute inflammatory response has been triggered in rat lungs by deposition of IgG immune complexes. The inflammatory reaction triggered is highly tissue damaging and requires activation of NF-kappaB with ensuing generation of chemokines and cytokines. Endogenous generation of IL- 10 and IL- 13 as well as secretory leukocyte protease inhibitor (SLPI), significantly regulates this inflammatory response. IL-10 and IL-13 attenuate NF-kappaB activation by interfering with breakdown of IkappaBalpha, while SLPI likewise suppresses NF-kappaB activation, but by interfering with breakdown of IkappaBbeta. Antibody induced blockade of IL-10, IL-13 or SLPI enhances NF-KB activation in lung and exacerbates the lung inflammatory response and injury. These data indicate that endogenous IL-10, IL-13 and SLPI are important regulators of the inflammatory response by reducing gene activation with resultant generation of peptide mediators/cytokines and chemokines.  相似文献   

13.
14.
AimsGranulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation.Main methodsAllergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production.Key findingsContrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation.SignificanceThese observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis.  相似文献   

15.
Allergic airways disease (AAD) is associated with an increased influx of eosinophils to the lungs, mucus hypersecretion and Th2 cytokine production. Dietary antioxidant supplementation may alter cytokine responses and thus allergic inflammation. Lycopene is a potent dietary antioxidant. The objective of this study was to investigate the effects of lycopene, on allergic inflammation, in a mouse model of AAD. BALB/c mice receiving lycopene supplement or control were intraperitoneally sensitised and intranasally challenged with ovalbumin (OVA) to induce AAD. The effect of supplementation on inflammatory cell influx into bronchoalveolar lavage fluid, lung tissue and blood, mucus-secreting cell numbers in the airways, draining lymph node OVA-specific cytokine release, serum IgG1 levels and lung function in AAD was assessed. Supplementation reduced eosinophilic infiltrates in the bronchoalveolar lavage fluid, lung tissue and blood, and mucus-secreting cell numbers in the airways. The OVA-specific release of Th2-associated cytokines IL-4 and IL-5 was also reduced. We conclude that supplementation with lycopene reduces allergic inflammation both in the lungs and systemically, by decreasing Th2 cytokine responses. Thus, lycopene supplementation may have a protective effect against asthma.  相似文献   

16.
Excessive production of airway mucus is a cardinal feature of bronchial asthma and chronic obstructive pulmonary disease (COPD) and contributes to morbidity and mortality in these diseases. IL-13, a Th2-type cytokine, is a central mediator in the pathogenesis of bronchial asthma, including mucus overproduction. Using a genome-wide search for genes induced in airway epithelial cells in response to IL-13, we identified pendrin encoded by the SLC26A4 (PDS) gene as a molecule responsible for airway mucus production. In both asthma and COPD mouse models, pendrin was up-regulated at the apical side of airway epithelial cells in association with mucus overproduction. Pendrin induced expression of MUC5AC, a major product of mucus in asthma and COPD, in airway epithelial cells. Finally, the enforced expression of pendrin in airway epithelial cells in vivo, using a Sendai virus vector, rapidly induced mucus overproduction in the lumens of the lungs together with neutrophilic infiltration in mice. These findings collectively suggest that pendrin can induce mucus production in airway epithelial cells and may be a therapeutic target candidate for bronchial asthma and COPD.  相似文献   

17.
Acidic mammalian chitinase is upregulated in response to allergen exposure in the lung. We investigated the effects of chitinase inhibitors, allosamidin (Allo) and demethylallosamidin (Dma), on asthmatic responses. Mice were subjected to IL-13 instillation into the airways or to ovalbumin sensitization plus exposure with or without treatment of Allo or Dma. Airway hyperresponsiveness (AHR) and inflammation were evaluated. Allo and Dma attenuated airway eosinophilia and the upregulation of eotaxin after IL-13 instillation, while Dma, but not Allo, suppressed AHR in IL-13-induced asthma. Allo or Dma suppressed the elevated chitinase activity in BAL fluids after IL-13 to similar levels. The bronchoprotective PGE2 levels in BAL fluids were elevated after IL-13 instillation. Allo, but not Dma, suppressed the overproduction of PGE2 and the expression of COX-2 and PGE synthase-1 induced by IL-13. In ovalbumin-induced asthma, Dma suppressed AHR more strongly than Allo. These findings suggest that Dma attenuates asthmatic responses induced by IL-13 without affecting PGE2 synthesis. Dma may have potential as therapeutic agents for asthma.  相似文献   

18.
Increased IL-9 expression, either systemically or under the control of lung-specific promoter, induces an asthma-like phenotype, including mucus overproduction, mastocytosis, lung eosinophilia, and airway hyperresponsiveness. These activities correlate with increased production of other Th2 cytokines such as IL-4, IL-5, and IL-13 in IL-9 Tg mice. To determine the exact role of IL-13 in this phenotype, mice overexpressing IL-9 were crossed with IL-13-deficient mice. In these animals, IL-9 could still induce mastocytosis and B lymphocyte infiltration of the lungs. Although IL-9-induced eosinophilia in the peritoneal cavity was not diminished in the absence of IL-13, IL-13 was required for IL-9 to increase eotaxin expression and lung eosinophilia. Mucus production and up-regulation of lung epithelial genes upon IL-9 overexpression were completely abolished in the absence of IL-13. Using hemopoietic cell transfer experiments with recipients that overexpressed IL-9 but were deficient in the IL-9 receptor (IL-9R), we could demonstrate that the effect of IL-9 on lung epithelial cells is indirect and could be fully restored by transfer of hemopoietic cells expressing IL-9R. Mucus production by lung epithelial cells was only up-regulated when hemopoietic cells simultaneously expressed functional IL-9R and IL-13 genes, indicating that IL-13 is not a cofactor but a direct mediator of the effect of IL-9 on lung epithelial cells. Taken together, these data indicate that IL-9 can promote asthma through IL-13-independent pathways via expansion of mast cells, eosinophils, and B cells, and through induction of IL-13 production by hemopoietic cells for mucus production and recruitment of eosinophils by lung epithelial cells.  相似文献   

19.
It is well established that female sex hormones have a pivotal role in inflammation. For instance, our group has previously reported that estradiol has proinflammatory actions during allergic lung response in animal models. Based on these findings, we have decided to further investigate whether T regulatory cells are affected by female sex hormones absence after ovariectomy. We evaluated by flow cytometry the frequencies of CD4+Foxp3+ T regulatory cells (Tregs) in central and peripheral lymphoid organs, such as the thymus, spleen and lymph nodes. Moreover, we have also used the murine model of allergic lung inflammation a to evaluate how female sex hormones would affect the immune response in vivo. To address that, ovariectomized or sham operated female Balb/c mice were sensitized or not with ovalbumin 7 and 14 days later and subsequently challenged twice by aerosolized ovalbumin on day 21. Besides the frequency of CD4+Foxp3+ T regulatory cells, we also measured the cytokines IL-4, IL-5, IL-10, IL-13 and IL-17 in the bronchoalveolar lavage from lungs of ovalbumine challenged groups. Our results demonstrate that the absence of female sex hormones after ovariectomy is able to increase the frequency of Tregs in the periphery. As we did not observe differences in the thymus-derived natural occurring Tregs, our data may indicate expansion or conversion of peripheral adaptive Tregs. In accordance with Treg suppressive activity, ovariectomized and ovalbumine-sensitized and challenged animals had significantly reduced lung inflammation. This was observed after cytokine analysis of lung explants showing significant reduction of pro-inflammatory cytokines, such as IL-4, IL-5, IL-13 and IL-17, associated to increased amount of IL-10. In summary, our data clearly demonstrates that OVA sensitization 7 days after ovariectomy culminates in reduced lung inflammation, which may be directly correlated with the expansion of Tregs in the periphery and further higher IL-10 secretion in the lungs.  相似文献   

20.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号