首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a lack of transferrin, hypotransferrinemic (Hp) mice demonstrate an accumulation of iron in peripheral organs including the lungs. One potential candidate for such transferrin-independent uptake of iron is divalent metal transporter-1 (DMT1), an established iron transporter. We tested the hypothesis that increased concentrations of iron in the lungs of Hp mice are associated with elevations in DMT1 expression. With the use of inductively coupled plasma emission spectroscopy, measurements of nonheme iron confirmed significantly elevated concentrations in the lung tissue of Hp mice relative to the wild-type mice. Western blot analyses for the expression of two isoforms of DMT1 in the Hp mice relative to the wild-type animals demonstrated an elevation for the isoform that lacks an iron-responsive element (IRE) with significant decrements in the expression of +IRE DMT1. With the use of immunohistochemistry, -IRE DMT1 was localized to both airway epithelial cells and alveolar macrophages in wild-type mice. Staining appeared increased in both types of cells in the Hp mice. Elevated concentrations of both tissue nonheme iron and expression of -IRE DMT1 in the Hp mice were associated with increased quantities of -IRE mRNA. There was no difference between wild-type and homozygotic Hp mice in the amount of mRNA for DMT1 +IRE. We conclude that differences between Hp and wild-type mice in nonheme iron concentrations were accompanied by increases in the expression of -IRE DMT1. Increased expression of -IRE DMT1 in the lungs of the Hp mice could be responsible for elevated concentrations of the metal in these tissues.  相似文献   

2.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.  相似文献   

3.
Haptoglobin (Hp) has been known to be associated with the host defence response to infection and inflammation. The biological functions of Hp can be related to its ability to bind haemoglobin or to modulate immune response. Hp is expressed at a high level in lung cells, yet its protective role(s) in the lung is not known. Using transgenic mice overexpressing Hp, we demonstrated that Hp can reduce blood-induced lung injury. Hp-mediated haemoglobin catabolism in lung cells appears to be linked to iron mobilization, and may be an efficient mechanism to reduce oxidative damage associated with haemolysis.  相似文献   

4.
Abstract

Haptoglobin (Hp) has been known to be associated with the host defence response to infection and inflammation. The biological functions of Hp can be related to its ability to bind haemoglobin or to modulate immune response. Hp is expressed at a high level in lung cells, yet its protective role (s) in the lung is not known. Using transgenic mice overexpressing Hp, we demonstrated that Hp can reduce blood-induced lung injury. Hp-mediated haemoglobin catabolism in lung cells appears to be linked to iron mobilization, and may be an efficient mechanism to reduce oxidative damage associated with haemolysis.  相似文献   

5.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

6.
Using the hypotransferrinemic (Hp) mouse model, we studied the effect of altered iron homeostasis on the defense of the lung against a catalytically active metal. The homozygotic (hpx/hpx) Hp mice had greatly diminished concentrations of both serum and lavage fluid transferrin relative to wild-type mice and heterozygotes. Fifty micrograms of a particle containing abundant concentrations of metals (a residual oil fly ash) was instilled into wild-type mice and heterozygotic and homozygotic Hp animals. There was an oxidative stress associated with particle exposure as manifested by decreased lavage fluid concentrations of ascorbate. However, rather than an increase in lung injury, diminished transferrin concentrations in homozygotic Hp mice were associated with decreased indexes of damage, including concentrations of relevant cytokines, inflammatory cell influx, lavage fluid protein, and lavage fluid lactate dehydrogenase. Comparable to other organs in the homozygotic Hp mouse, siderosis of the lung was evident, with elevated concentrations of lavage fluid and tissue iron. Consequent to these increased concentrations of iron, proteins to store and transport iron, ferritin, and lactoferrin, respectively, were increased when assayed by immunoprecipitation and immunohistochemistry. We conclude that the lack of transferrin in Hp mice did not predispose the animals to lung injury after exposure to a particle abundant in metals. Rather, these mice demonstrated a diminished injury that was associated with an increase in the metal storage and transport proteins.  相似文献   

7.
Alveolar macrophages express many proteins important in iron homeostasis, including the iron importer divalent metal transport 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) that likely participate in lung defense. We found the iron regulatory hormone hepcidin (HAMP) is also produced by alveolar macrophages. In mouse alveolar macrophages, HAMP mRNA was detected at a low level when not stimulated but at a high level when exposed to lipopolysaccharide (LPS). LPS also affected the mRNA levels of the iron transporters, with DMT1 being upregulated and FPN1 downregulated. However, iron had no effect on HAMP expression but was able to upregulate both DMT1 and FPN1 in alveolar macrophages. IL-1 and IL-6, which are important in HAMP augmentation in hepatocytes, also did not affect HAMP expression in alveolar macrophages. In fact, the LPS-induced alterations in the expression of HAMP as well as DMT1 and FPN1 were preserved in the alveolar macrophages isolated from IL-1 receptor or IL-6-deficient mice. When alveolar macrophages were loaded with transferrin-bound (55)Fe, the subsequent release of (55)Fe was inhibited significantly by LPS. In addition, treatment of these cells with either LPS or HAMP caused the diminishment of the surface FPN1. These findings are consistent with the current model that HAMP production leads to a decreased iron efflux. Our studies suggest that iron mobilization by alveolar macrophages can be affected by iron and LPS via several pathways, including HAMP-mediated degradation of FPN1, and that these cells may use unique regulatory mechanisms to cope with iron imbalance in the lung.  相似文献   

8.
Exposure to bleomycin can result in an inflammatory lung injury. The biological effect of this anti-neoplastic agent is dependent on its coordination of iron with subsequent oxidant generation. In lung cells, divalent metal transporter 1 (DMT1) can participate in metal transport resulting in control of an oxidative stress and tissue damage. We tested the postulate that metal import by DMT1 would participate in preventing lung injury after exposure to bleomycin. Microcytic anemia (mk/mk) mice defective in DMT1 and wild-type mice were exposed to either bleomycin or saline via intratracheal instillation and the resultant lung injury was compared. Twenty-four h after instillation, the number of neutrophils and protein concentrations after bleomycin exposure were significantly elevated in the mk/mk mice relative to the wild-type mice. Similarly, levels of a pro-inflammatory mediator were significantly increased in the mk/mk mice relative to wild-type mice following bleomycin instillation. Relative to wild-type mice, mk/mk mice demonstrated lower non-heme iron concentrations in the lung, liver, spleen, and splenic, peritoneal, and liver macrophages. In contrast, levels of this metal were elevated in alveolar macrophages from mk/mk mice. We conclude that DMT1 participates in the inflammatory lung injury after bleomycin with mk/mk mice having increased inflammation and damage following exposure. This finding supports the hypothesis that DMT1 takes part in iron detoxification and homeostasis in the lung.  相似文献   

9.
Matrix metalloproteinase (MMP)-9 has been consistently identified in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, its role in the development of the disease remains undefined. Mice that specifically express human MMP-9 in their macrophages were generated, and morphometric, biochemical, and histological analyses were conducted on the transgenic and littermate control mice over 1 yr to determine the effect of macrophage MMP-9 expression on emphysema formation and lung matrix content. Lung morphometry was normal in transgenic mice at 2 mo of age (mean linear intercept = 50+/-3 littermate mice vs. 51+/-2 transgenic mice). However, after 12 mo of age, the MMP-9 transgenic mice developed significant air space enlargement (mean linear intercept = 53+/-3 littermate mice vs. 61+/-2 MMP-9 transgenic mice; P<0.04). Lung hydroxyproline content was not significantly different between wild-type and transgenic mice, but MMP-9 did significantly decrease alveolar wall elastin at 1 yr of age (4.9+/-0.3% area of alveolar wall in the littermate mice vs. 3.3+/-0.3% area of alveolar wall in the MMP-9 mice; P<0.004). Thus these results establish a central role for MMP-9 in the pathogenesis of this disease by demonstrating that expression of this protease in macrophages can alter the extracellular matrix and induce progressive air space enlargement in mice.  相似文献   

10.
The c-Raf-1 kinase is a downstream effector of Ras signaling. Both proteins are highly oncogenic when they are mutationally activated, but only the Ras GTPase is frequently mutated in naturally occurring tumors. Although the c-Raf-1 protein was found to be amplified in different lung cancer cell lines, overexpression of the wild-type c-Raf-1 protein was shown to be insufficient to transform cultured cells. Here we have addressed the question of whether overexpression of the wild-type c-Raf-1 kinase can induce lung cancer in mice. We show that lung-targeted expression of oncogenically activated or wild-type c-Raf-1 proteins induces morphologically indistinguishable lung adenomas in transgenic mice. Compared with mice transgenic for the activated c-Raf-1-BxB, tumor development is delayed and occurs at a lower incidence in wild-type c-Raf-1 transgenic mice. Our studies show that the c-Raf-1 expression level is a critical parameter in tumor development and should be analyzed in more detail to evaluate its potential in the induction of cancer.  相似文献   

11.
12.
The molecular events leading to emphysema development include generation of oxidative stress and alveolar cell apoptosis. Oxidative stress upregulates ceramides, proapoptotic signaling sphingolipids that trigger further oxidative stress and alveolar space enlargement, as shown in an experimental model of emphysema due to VEGF blockade. As alveolar cell apoptosis and oxidative stress mutually interact to mediate alveolar destruction, we hypothesized that the oxidative stress generated by ceramide is required for its pathogenic effect on lung alveoli. To model the direct lung effects of ceramide, mice received ceramide intratracheally (Cer(12:0) or Cer(8:0); 1 mg/kg) or vehicle. Apoptosis was inhibited with a general caspase inhibitor. Ceramide augmentation shown to mimic levels found in human emphysema lungs increased oxidative stress, and decreased, independently of caspase activation, the lung superoxide dismutase activity at 48 h. In contrast to their wild-type littermates, transgenic mice overexpressing human Cu/Zn SOD were significantly protected from ceramide-induced superoxide production, apoptosis, and air space enlargement. Activation of lung acid sphingomyelinase in response to ceramide treatment was abolished in the Cu/Zn SOD transgenic mice. Since cigarette smoke-induced emphysema in mice is similarly ameliorated by the Cu/Zn SOD overexpression, we hypothesized that cigarette smoke may induce ceramides in the mouse lung. Utilizing tandem mass spectrometry, we documented increased lung ceramides in adult mice exposed to cigarette smoke for 4 wk. In conclusion, ceramide-induced superoxide accumulation in the lung may be a critical step in ceramide's proapoptotic effect in the lung. This work implicates excessive lung ceramides as amplifiers of lung injury through redox-dependent mechanisms.  相似文献   

13.
CD163 is a highly expressed macrophage membrane protein belonging to the scavenger receptor cysteine rich (SRCR) domain family. The CD163 expression is induced by interleukin-6, interleukin-10 and glucocorticoids. Its function has remained unknown until recently when CD163 was identified as the endocytic receptor binding hemoglobin (Hb) in complex with the plasma protein haptoglobin (Hp). This specific receptor-ligand interaction leading to removal from plasma of the Hp-Hb complex-but not free Hp or Hb-now explains the depletion of circulating Hp in individuals with increased intravascular hemolysis. Besides having a detoxificating effect by removing Hb from plasma, the CD163-mediated endocytosis of the Hp-Hb complex may represent a major pathway for uptake of iron in the tissue macrophages.The novel functional linkage of CD163 and Hp, which both are induced during inflammation, also reveal some interesting perspectives relating to the suggested anti-inflammatory properties of the receptor and the Hp phenotypes.  相似文献   

14.
The blood iron status of 44 male runners of various running specialties (18 sprinters, 13 middle- and 13 long-distance runners) is evaluated by measuring serum ferritin (SF), serum iron (Si), hemoglobin concentration (Hb), hematocrit (Ht), red blood cells content (RBC) and haptoglobin concentration (Hp). The results of these analyses (except Hp) are compared to those obtained in sedentary male subjects (control group) of the same mean age. Mean SF, SI, Hb and Ht measured in athletes are significantly lower than in control group. The remarkably low Hp values obtained in athletes suggests the occurrence of hemolysis. Using unpaired t test, it appears that the blood iron status of these runners does not depend on their running specialty.  相似文献   

15.
Pulmonary fibrosis is a common response to a variety of lung injuries, characterized by fibroblast/myofibroblast expansion and abnormal accumulation of extracellular matrix. An increased expression of matrix metalloprotease 9 (MMP9) in human and experimental lung fibrosis has been documented, but its role in the fibrotic response is unclear. We studied the effect of MMP9 overexpression in bleomycin-driven lung fibrosis using transgenic mice expressing human MMP9 in alveolar macrophages (hMMP9-TG). At 8 weeks post-bleomycin, the extent of fibrotic lesions and OH-proline content were significantly decreased in the TG mice compared to the WT mice. The decreased fibrosis in hMMP9-TG mice was preceded by a significant reduction of neutrophils and lymphocytes in bronchoalveolar lavage (BAL) at 1 and 4 weeks post-bleomycin, respectively, as well as by significantly less TIMP-1 than the WT mice. From a variety of cytokines/chemokines investigated, we found that BAL levels of insulin-like growth factor binding protein-3 (IGFBP3) as well as the immunoreactive protein in the lungs were significantly lower in hMMP9-TG mice compared with WT mice despite similar levels of gene expression. Using IGFBP-3 substrate zymography we found that BAL from TG mice at 1 week after bleomycin cleaved IGFBP-3. Further, we demonstrated that MMP9 degraded IGFBP-3 into lower molecular mass fragments. These findings suggest that increased activity of MMP9 secreted by alveolar macrophages in the lung microenvironment may have an antifibrotic effect and provide a potential mechanism involving IGFBP3 degradation.  相似文献   

16.
To characterize the role of GM-CSF in pulmonary fibrosis, we have studied bleomycin-induced fibrosis in wild-type mice vs mice with a targeted deletion of the GM-CSF gene (GM-CSF-/- mice). Without GM-CSF, pulmonary fibrosis was worse both histologically and quantitatively. These changes were not related to enhanced recruitment of inflammatory cells because wild-type and GM-CSF-/- mice recruited equivalent numbers of cells to the lung following bleomycin. Interestingly, recruitment of eosinophils was absent in GM-CSF-/- mice. We investigated whether the enhanced fibrotic response in GM-CSF-/- animals was due to a deficiency in an endogenous down-regulator of fibrogenesis. Analysis of whole lung homogenates from saline- or bleomycin-treated mice revealed that GM-CSF-/- animals had reduced levels of PGE2. Additionally, alveolar macrophages were harvested from wild-type and GM-CSF-/- mice that had been exposed to bleomycin. Although bleomycin treatment impaired the ability of alveolar macrophages from wild-type mice to synthesize PGE2, alveolar macrophages from GM-CSF-/- mice exhibited a significantly greater defect in PGE2 synthesis than did wild-type cells. Exogenous addition of GM-CSF to alveolar macrophages reversed the PGE2 synthesis defect in vitro. Administration of the PG synthesis inhibitor, indomethacin, to wild-type mice during the fibrogenic phase postbleomycin worsened the severity of fibrosis, implying a causal role for PGE2 deficiency in the evolution of the fibrotic lesion. These data demonstrate that GM-CSF deficiency results in enhanced fibrogenesis in bleomycin-induced pulmonary fibrosis and indicate that one mechanism for this effect is impaired production of the potent antifibrotic eicosanoid, PGE2.  相似文献   

17.
Human immunodeficiency virus (HIV)-1 causes lung disease by increasing the host's susceptibility to pathogens. HIV-1 also causes an increase in systemic oxidative/nitrosative stress, perhaps enhancing the deleterious effects of secondary infections. Here we examined the ability of HIV-1 proteins to increase lung oxidative/nitrosative stress after lipopolysaccharide (LPS) (endotoxin) administration in an HIV-1 transgenic mouse model. Lung oxidative/nitrosative stress biomarkers studied 3 and 6 h after LPS administration were as follows: lung edema, tissue superoxide, NO metabolites, nitrotyrosine, hydrogen peroxide, and bronchoalveolar lavage fluid (BALF) glutathione (GSH). Blood serum cytokine levels were quantified to verify immune function of our nonimmunocompromised animal model. Results indicate that 3 h after LPS administration, HIV-1 transgenic mouse lung tissue has significantly greater edema and superoxide. Furthermore, NO metabolites are significantly elevated in HIV-1 transgenic mouse BALF, lung tissue, and blood plasma compared with those of wild-type mice. HIV-1 transgenic mice also produce significantly greater lung nitrotyrosine and hydrogen peroxide than wild-type mice. In addition, HIV-1 transgenic mice produce significantly less BALF GSH than wild-type mice 3 h after LPS treatment. Without treatment, serum cytokine levels are similar for HIV-1 transgenic and wild-type mice. After treatment, serum cytokine levels are significantly elevated in both HIV-1 transgenic and wild-type mice. Therefore, HIV-1 transgenic mice have significantly greater lung oxidative/nitrosative stress after endotoxin administration than wild-type mice, independent of immune function. These results indicate that HIV-1 proteins may increase pulmonary complications subsequent to a secondary infection by altering the lung redox potential.  相似文献   

18.
To determine whether increased levels of VEGF disrupt postnatal lung formation or function, conditional transgenic mice in which VEGF 164 expression was enhanced in respiratory epithelial cells were produced. VEGF expression was induced in the lungs of VEGF transgenic pups with doxycycline from postnatal day 1 through 2 and 6 wk of age. VEGF levels were higher in bronchoalveolar lavage fluid (BALF) and lung homogenates of VEGF transgenic mice compared with endogenous VEGF levels in controls. Neonatal mortality was increased by 50% in VEGF transgenic mice. Total protein content in BALF was elevated in VEGF transgenic mice. Surfactant protein B protein expression was unaltered in VEGF transgenic mice. Although postnatal alveolar and vascular development were not disrupted by VEGF expression, VEGF transgenic mice developed pulmonary hemorrhage, alveolar remodeling, and macrophage accumulation as early as 2 wk of age. Electron microscopy demonstrated abnormal alveolar capillary endothelium in the VEGF transgenic mice. In many locations, the endothelium was discontinuous with segments of attenuated endothelial cells. Large numbers of hemosiderin-laden macrophages and varying degrees of emphysema were observed in adult VEGF transgenic mice. Overexpression of VEGF in the neonatal lung increased infant mortality and caused pulmonary hemorrhage, hemosiderosis, alveolar remodeling, and inflammation.  相似文献   

19.
Macrophages have a wide variety of activities and it is largely unknown how the diverse phenotypes of macrophages contribute to pathological conditions in the different types of tissue injury in vivo. In this study we established a novel animal model of acute respiratory distress syndrome caused by the dysfunction of alveolar epithelial type II (AE2) cells and examined the roles of alveolar macrophages in the acute lung injury. The human diphtheria toxin (DT) receptor (DTR), heparin-binding epidermal growth factor-like growth factor (HB-EGF), was expressed under the control of the lysozyme M (LysM) gene promoter in the mice. When DT was administrated to the mice they suffered from acute lung injury and died within 4 days. Immunohistochemical examination revealed that AE2 cells as well as alveolar macrophages were deleted via apoptosis in the mice treated with DT. Consistent with the deletion of AE2 cells, the amount of surfactant proteins in bronchoalveolar lavage fluid was greatly reduced in the DT-treated transgenic mice. When bone marrow from wild-type mice was transplanted into irradiated LysM-DTR mice, the alveolar macrophages became resistant to DT but the mice still suffered from acute lung injury by DT administration. Compared with the mice in which both AE2 cells and macrophages were deleted by DT administration, the DT-treated LysM-DTR mice with DT-resistant macrophages showed less severe lung injury with a reduced amount of hepatocyte growth factor in bronchoalveolar lavage fluid. These results indicate that macrophages play a protective role in noninflammatory lung injury caused by the selective ablation of AE2 cells.  相似文献   

20.
Mice deficient in tissue inhibitor of metalloproteinase-3 (TIMP-3) develop an emphysema-like phenotype involving increased pulmonary compliance, tissue degradation, and matrix metalloproteinase (MMP) activity. After a septic insult, they develop a further increase in compliance that is thought to be a result of heightened metalloproteinase activity produced by the alveolar macrophage, potentially modeling an emphysemic exacerbation. Therefore, we hypothesized that TIMP-3 null mice lacking alveolar macrophages would not be susceptible to the altered lung function associated with a septic insult. TIMP-3 null and wild-type (WT) mice were depleted of alveolar macrophages before the induction of a septic insult and assessed for alteration in lung mechanics, alveolar structure, metalloproteinase levels, and inflammation. The results showed that TIMP-3 null mice lacking alveolar macrophages were protected from sepsis-induced alterations in lung mechanics, particularly pulmonary compliance, a finding that was supported by changes in alveolar structure. Additionally, changes in lung mechanics involved primarily peripheral tissue vs. central airways as determined using the flexiVent system. From investigation into possible molecules that could cause these alterations, it was found that although several proteases and inflammatory mediators were increased during the septic response, only MMP-7 was attenuated after macrophage depletion. In conclusion, the alveolar macrophage is essential for the TIMP-3 null sepsis-induced compliance alterations. This response may be mediated in part by MMP-7 activity but occurs independently of inflammatory cytokine and/or chemokine concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号