首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objectives of this study were to evaluate the myogenic behavior of blood vessels and their interaction within the coronary arterial tree and to evaluate the possible role of the myogenic response in autoregulation. The model consists of 10 compartments in series, each representing a class of vessel sizes. Diameter and resistance in each class are determined by their value at full dilation (d(p,) R(p)) and by the myogenic response. Three distributions of R(p) and three distributions of myogenic strength, M(i) (slope of pressure-diameter curve, range -0.05 to -0.4%/mmHg) were evaluated (9 cases). It was found that larger vessels attenuate the myogenic activity of smaller vessels and that myogenic responsiveness is sufficient to achieve autoregulation. When M(i) has a maximum in vessels of 84 microm, the maximum effect of perfusion pressure on active diameter occurs in vessels between 123 and 181 microm, depending on the distribution of R(p). Distribution of resistance and control mechanisms in the coronary arterial tree are important for interpretation of individual vessel responses as observed in vivo.  相似文献   

2.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

3.
Several recent studies have implicated the RhoA-Rho kinase pathway in arterial myogenic behavior. The goal of this study was to determine the effects of Rho kinase inhibition (Y-27632) on cerebral artery calcium and diameter responses as a function of transmural pressure. Excised segments of rat posterior cerebral arteries (100-200 microm) were cannulated and pressurized in an arteriograph at 37 degrees C. Increasing pressure from 10 to 60 mmHg triggered an elevation of cytosolic calcium concentration ([Ca(2+)](i)) from 113 +/- 9 to 199 +/- 12 nM and development of myogenic tone. Further elevation of pressure to 120 mmHg induced only a minor additional increase in [Ca(2+)](i) and constriction. Y-27632 (0.3-10 microM) inhibited myogenic tone in a concentration-dependent manner at 60 and 120 mmHg with comparable efficacy; conversely, sensitivity was decreased at 120 vs. 60 mmHg (50% inhibitory concentration: 2.5 +/- 0.3 vs. 1.4 +/- 0.1 microM; P < 0.05). Dilation was accompanied by further increases in [Ca(2+)](i) and an enhancement of Ca(2+) oscillatory activity. Y-27632 also effectively dilated the vessels permeabilized with alpha-toxin in a concentration-dependent manner. However, dilator effects of Y-27632 at low concentrations were larger at 60 vs. 100 mmHg. In summary, the results support a significant role for RhoA-Rho kinase pathway in cerebral artery mechanotransduction of pressure into sustained vasoconstriction (myogenic tone and reactivity) via mechanisms that augment smooth muscle calcium sensitivity. Potential downstream events may involve inhibition of myosin phosphatase and/or stimulation of actin polymerization, both of which are associated with increased smooth muscle force production.  相似文献   

4.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

5.
Myogenic response, flow-dependent dilation, and direct metabolic control are important mechanisms controlling coronary flow. A model was developed to study how these control mechanisms interact at different locations in the arteriolar tree and to evaluate their contribution to autoregulatory and metabolic flow control. The model consists of 10 resistance compartments in series, each representing parallel vessel units, with their diameters determined by tone depending on either flow and pressure [flow-dependent tone reduction factor (TRF(flow)) x Tone(myo)] or directly on metabolic factors (Tone(meta)). The pressure-Tone(myo) and flow-TRF(flow) relations depend on the vessel size obtained from interpolation of data on isolated vessels. Flow-dependent dilation diminishes autoregulatory properties compared with pressure-flow lines obtained from vessels solely influenced by Tone(myo). By applying Tone(meta) to the four distal compartments, the autoregulatory properties are restored and tone is equally distributed over the compartments. Also, metabolic control and blockage of nitric oxide are simulated. We conclude that a balance is required between the flow-dependent properties upstream and the constrictive metabolic properties downstream. Myogenic response contributes significantly to flow regulation.  相似文献   

6.
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na(+) reabsorption. Recently we demonstrated that Ca(2+) signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na(+)/Ca(2+) exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca(2+) signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1-100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca(2+) signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca(2+). These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca(2+) release and increased Ca(2+) entry, respectively. The increased SR Ca(2+) release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ~70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca(2+) signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca(2+) signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension.  相似文献   

7.
Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD-/-) mice. We hypothesized that myogenic tone would be enhanced in SOD-/- mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD-/- mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD-/- mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD-/- mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD-/- mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD-/- mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD-/- mice, possibly mediated by prooxidants.  相似文献   

8.
This study investigated the effect of peroxynitrite (OONO(-))-induced nitrosylation of filamentous (F)-actin on myogenic tone in isolated and pressurized posterior cerebral arteries (PCAs). Immunohistochemical staining was used to determine 3-nitrotyrosine (NT) and F-actin content in vascular smooth muscle after exposure to 10(-7) M or 10(-4) M OONO(-) for 5 or 60 min in isolated third-order PCAs (n = 37) from male Wistar rats pressurized to 75 mmHg in an arteriograph chamber, quantified with confocal microscopy. Additionally, the role of K(+) channels in OONO(-)-induced dilation was investigated with 3 microM glibenclamide or 10 mM tetraethylammonium chloride before OONO(-) exposure. OONO(-) (10(-4) M) induced a 40% dilation of tone (P < 0.05) while diminishing F-actin content by half (P < 0.05) and causing a 60-fold increase in NT (P < 0.05) in the vascular smooth muscle of PCAs. Additionally, F-actin was inversely correlated with both diameter and NT content (P < 0.05) and was significantly colocalized in the vascular smooth muscle with NT (overlap coefficient = 0.8). The dilation to ONOO(-) was independent of K(+) channel activity and thiol oxidation as glibenclamide, tetraethylammonium chloride, and dithiothreitol had no effect on OONO(-)-induced dilation or F-actin or NT content in PCAs. Because NT was colocalized with F-actin, we hypothesize that OONO(-) induces nitrosylation of F-actin in vascular smooth muscle leading to depolymerization and the subsequent loss of myogenic tone, which may promote vascular damage during oxidative stress such as in ischemia and reperfusion injury.  相似文献   

9.
Our aim in this paper is to investigate the boundedness, the extreme stability, and the periodicity of positive solutions of the periodically forced Sigmoid Beverton-Holt model: [Formula: see text] where {a ( n )} is a positive periodic sequence with period p and δ>0. In the special case when δ=1, the above equation reduces to the well-known periodic Pielou logistic equation which is known to be equivalent to the periodically forced Beverton-Holt model.  相似文献   

10.

Background

Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined.

Methodology/Principal Findings

Fourth-order mesenteric arteries (170–250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1–100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K+ channel blockade with glibenclamide (KATP), 4-aminopyradine (KV), BaCl2 (KIR) or tetraethylammonium (TEA, KCa) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca2+ fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca2+ (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca2+ responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction.

Conclusion

In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca2+ responses, independent of muscarinic receptor, NO or K+ channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs.  相似文献   

11.
Activation of MAP kinase kinase, also called ERK kinase (MEK), may lead to desinhibition of thin filament regulatory proteins and we therefore investigated the acute effects of the potent MEK inhibitor, PD98059 on the contractile properties of pressurized rat middle cerebral arteries. Cerebral arteries (diameter 100-150 microm) were mounted on a pressure myograph and PD98059 (10 microM, 40 microM) significantly inhibited (15% and 64%) myogenic tone (P < 0.001). At these concentrations, PD98059 also significantly reduced the vasopressin (0.1 microM)- and KCl (60 mM)-induced tone. Cumulative addition of exogenous Ca2+ (0.4-1.6 mM) increased myogenic tone to approximately 50% of constriction at 80 mmHg. This effect was inhibited by PD98059 (P < 0.001). These results demonstrate that pressure-induced myogenic tone is inhibited by PD98059 at the concentrations that have been reported to be selective for inhibition of MEK and the MAP kinase cascade. However, our results also demonstrate that PD98059 may have nonspecific effects on voltage-sensitive Ca2+ entry in vascular smooth muscle.  相似文献   

12.
An in vitro method is described for the isolation, cannulation, and pressurization of a 10-mm segment of the adult rat testicular subcapsular artery by use of a 200-microns micropipette connected to an adjustable-height reservoir. External and internal arterial diameters were measured by a digital filar micrometer eyepiece calibrated with a Microcode scaler. Transmural pressure was increased stepwise by 20 mm Hg from 20 to 180 mm Hg at 10-min intervals. The following novel triphasic myogenic response was found: a 22.5% increase in lumen cross-sectional area from 20 to 40 mm Hg (p less than 0.05); a 37.3% decrease in lumen cross-sectional area from 40 to 100 mm Hg (p less than 0.05); and a 72.4% increase in lumen cross-sectional area from 100 to 180 mm Hg (p less than 0.05). Papaverine (0.1 mM) completely blocked the transmural pressure-induced vasoconstriction, indicating an active increase in vascular smooth muscle tone by transmural pressure. The calculated blood flow through the testicular subcapsular artery of the adult rat, from measured internal radii at various transmural pressures ranging from 20 to 180 mm Hg by Poiseuille's equation, was constant from 40 to 100 mm Hg and showed a progressive increase from 100 to 180 mm Hg. These data suggest that the myogenic response of the adult rat testicular subcapsular artery may have an important role in the autoregulation of the testicular blood supply.  相似文献   

13.
We studied the effects of perfusate pH on pulmonary vascular tone, reactivity, and thromboxane and prostacyclin synthesis in isolated buffer-perfused rabbit lungs. Extracellular acidosis did not affect base-line vascular tone, but alkalosis had a biphasic effect. Increasing the perfusate pH from 7.40 to 7.65 caused vasodilation, whereas raising pH to 7.70-8.10 caused vasoconstriction. Removing calcium (Ca2+) from the perfusate completely prevented the vasoconstriction caused by alkalosis. Perfusate pH strikingly affected pulmonary vascular reactivity. Acidosis inhibited the vasoconstriction caused by thromboxane and potassium chloride (KCl) but did not affect the response to angiotensin II. Alkalosis, in contrast, augmented the vasoconstriction caused by thromboxane and angiotensin II but reduced the vasoconstriction caused by KCl. Changes in pH also altered thromboxane and prostacyclin synthesis after the infusion of exogenous arachidonic acid (AA) or the endogenous release of AA by the lipid peroxide tert-butyl hydroperoxide.  相似文献   

14.
Arteries that have developed myogenic tone (MT) are in a markedly different physiological state compared with those that have not, with higher cytosolic [Ca(2+)] and altered activity of several signal transduction pathways. In this study, we sought to determine whether alpha(1)-adrenoceptor-induced Ca(2+) signaling is different in pressurized arteries that have spontaneously developed MT (the presumptive physiological state) compared with those that have not (a common experimental state). At 32 degrees C and intraluminal pressure of 70 mmHg, cytoplasmic [Ca(2+)] was steady in most smooth muscle cells (SMCs). In a minority of cells (34%), however, at least one propagating Ca(2+) wave occurred. alpha(1)-Adrenoceptor activation (phenylephrine, PE; 0.1-10.0 microM) caused strong vasoconstriction and markedly increased the frequency of Ca(2+) waves (in virtually all cells). However, when cytosolic [Ca(2+)] was elevated experimentally in these arteries ([K(+)] 20 mM), PE failed to elicit Ca(2+) waves, although it did elevate [Ca(2+)] (F/F(0)) further and caused further vasoconstriction. During development of MT, the cytosolic [Ca(2+)] (F/F(0)) in individual SMCs increased, Ca(2+) waves disappeared (from SMCs that had them), and small Ca(2+) ripples (frequency approximately 0.05 Hz) appeared in approximately 13% of cells. PE elicited only spatially uniform increases in [Ca(2+)] and a smaller change in diameter (than in the absence of MT). Nevertheless, when cytosolic [Ca(2+)] and MT were decreased by nifedipine (1 microM), PE did elicit Ca(2+) waves. Thus alpha(1)-adrenoceptor-mediated Ca(2+) signaling is markedly different in arteries with and without MT, perhaps due to the elevated [Ca(2+)], and may have a different molecular basis. alpha(1)-Adrenoceptor-induced vasoconstriction may be supported either by Ca(2+) waves or by steady elevation of cytoplasmic [Ca(2+)], depending on the amount of MT.  相似文献   

15.
Stretch of the rat mesenteric artery ring pretreated with noradrenaline evoked a myogenic response consisting of the fast and slow phases which were maximal at about 3.5 and 45.1 s after the stretch, resp. Hypercapnic acidosis inhibited both phases of the response. Role of Ca2+ in origin of the two phases is discussed.  相似文献   

16.
17.
We show that a single myogenic progenitor cell in vitro generates two types of myoblasts committed to two distinct myogenic cell lineages. Using fast and slow myosin heavy chain isoform content to define myotube type, we found that myogenic cells from fetal quail (day 10 in ovo) formed two types of myotubes in vitro: fast and mixed fast/slow. Clonal analysis showed that these two types of myotubes were formed from two types of myoblasts committed to distinct fast and fast/slow lineages. Serial subcloning demonstrated that the initial myoblast progeny of an individual myogenic progenitor cell were in the fast lineage, whereas later progeny were in the fast/slow lineage. Fast and slow myosin expression within particular myotubes reflects the genetic processes underlying myoblast commitment to diverse myogenic lineages.  相似文献   

18.
19.
20.
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号