首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
大麦HVA1基因和LEA蛋白与植物抗旱性的研究   总被引:1,自引:1,他引:0  
干旱胁迫下,植物体内会积累多种蛋白以保护细胞免受脱水伤害,其中包括Lea蛋白。LEA蛋白在植物耐寒、耐盐碱、耐干旱性方面起重要作用。大麦HVA1基因编码的蛋白即属于第三组LEA蛋白,国内外学者对该基因的结构与功能进行了深入的研究。根据近年研究结果,本文对LEA蛋白的结构与功能,大麦HVA1基因的表达与调控,大麦HVA1基因高同源性序列的克隆以及转基因植物对HVA1基因抗旱性功能验证等方面进行综述。  相似文献   

2.
植物抗旱基因工程研究进展   总被引:2,自引:0,他引:2  
综述了渗透保护物质生物合成关键酶基因、胚胎后期发生丰富蛋白(Lea)基因或Lea相关基因、编码转录因子的调节基因、抗氧化胁迫相关的酶等植物抗旱基因工程研究进展,并对其研究中存在的问题及今后的应用前景进行了讨论.  相似文献   

3.
棉花Lea蛋白D-113基因启动子的克隆及序列分析   总被引:14,自引:0,他引:14  
罗克明  郭余龙  肖月华  侯磊  裴炎 《遗传学报》2002,29(2):161-165,T001
为研究植物Lea(late embryogenesis abundant)蛋白基因启动子在种子中的特异性表达,通过PCR扩增,从棉花(Gossypium hirsutum cv.Coker312)中克隆了Lea蛋白基因家庭中D-113基因上游1024bp的调控序列。DNA序列分析结果表明,该片段与已报道的Lea蛋白基因同一家庭该基因的对应序列同源性达90%以上。将将启动子序列与GUS基因融合,构建成表达载体后,通过基因抢轰击导入到经ABA诱导处理的棉花胚性愈伤组织和油菜种子以及棉花的根、茎、叶中,组织化学分析结果表明,D-113基因启动子在胚中特异性表达。  相似文献   

4.
大豆Lea5基因是LEA基因家族成员之一。为分析大豆Lea5基因的功能,构建了大豆Lea5基因植物过表达载体p BI121-Lea5。通过农杆菌介导法转化烟草,获得TL-06、TL-09、TL-17和TL-32等4个转大豆Lea5基因烟草株系。RT-PCR分析表明大豆Lea5基因在4个转基因烟草株系的T2代植株均有不同程度的表达。以转基因TL-09和TL-32株系T2代植株为材料,进行了干旱和盐渍处理,结果表明,2个转大豆Lea5基因烟草株系T2代植株对干旱和盐渍的抗性显著强于野生型烟草,说明大豆Lea5基因可以提高植物抗干旱和盐碱的能力。  相似文献   

5.
干旱胁迫诱导下植物基因的表达与调控   总被引:16,自引:0,他引:16  
干旱胁迫能够诱导植物表达大量的基因 ,研究这些基因的表达与调控 ,为植物抗旱的定向育种创造条件。本文系统介绍了在干旱胁迫条件下 ,植物体内渗透调节物质和可溶性糖合成有关的基因、离子和水分通道及Lea蛋白基因的表达 ,以及与这些基因表达相关的调控元件和因子 ,干旱胁迫信号转导等方面的最新研究进展。  相似文献   

6.
植物在不同的逆境条件下可以生成一类受脱落酸(ABA)诱导的蛋白质[脱落酸响应蛋白(ABAresPonsiveProtein,RABpr。tein)](Bray1993)。RAB蛋白分布在不同的物种之中,许多[如Lea(Lateembryogen-。isabundant)蛋白(Dure1993)]形成于植物胚胎成熟失水过程中,但也有一些是植物受到不同逆境处理后在营养器官内所形成的「如脱水蛋白(Dehrdrin)](Dure1993)。已发现的70余个RAB蛋白中,有30余个属于脱水蛋白。(Close等1993)RAB蛋白在植物体内的功能目前尚不了解(Bray1993)。由蛋白质的氨基酸组成分析表明,这些…  相似文献   

7.
林木抗旱的渗透调节及其基因工程研究进展   总被引:4,自引:0,他引:4  
与其它植物一样,林木对干旱的适应和抵御机理是多种多样的,渗透调节是其中重要的一个方面。在通过渗透调节抵御干旱胁迫的过程中,起作用的有一些小分子渗透调节物质,如脯氨酸、甜菜碱等;也有果聚糖、海藻糖和蔗糖等可溶性糖类;Lea蛋白在很多植物抵御干旱胁迫过程中也起到了重要作用。本文介绍了林木抗旱性的渗透调节机理及基因工程研究进展,并探讨了林木抗旱基因工程改良中面临的问题及改进措施。  相似文献   

8.
种子Lea蛋白的研究进展   总被引:24,自引:1,他引:23  
本文讨论了种子中Lea蛋白的种类、特点、基因表达的时空模式和调控机制以及在种子耐脱水性形成中的作用。  相似文献   

9.
植物病毒胞间运动的分子生物学和细胞学研究进展   总被引:3,自引:0,他引:3  
本文从植物细胞间连丝解剖结构,植物病毒运动蛋白,运动蛋白与胞间连丝和病毒核酸的相互作用,植物病毒在细胞间运动形式及其调节等方面综述了病毒在植物细胞间运动的分子生物学和细胞生物学进展。  相似文献   

10.
为了解高温处理促进大豆幼胚萌发成苗的分子生物学机制,采用经典的基因表达差异显示技术,分析大豆品种日本晴高温处理的幼胚与对照组材料的差异表达基因。对其中一个差异表达基因K6进行了测序和比对分析,结果表明该基因序列与大豆Williams 82基因组中的Lea5基因相似度高达99%,可以确定为Lea5基因。Blastp比对分析结果表明大豆Lea5蛋白为LEA-3亚家族成员。利用蛋白质分析软件分析了Lea5基因推测的蛋白质结构的特点,结果表明该蛋白质由113个氨基酸组成,相对分子量为12.283 k D,等电点高达10.12。该蛋白质不形成典型的二级结构。RT-PCR分析表明该基因表达具有组成型特点,在大豆幼胚发育过程中稳定表达,在大豆的根、胚轴和叶片等器官中均有表达。  相似文献   

11.
Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins.  相似文献   

12.
Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.  相似文献   

13.
Pattern recognition proteins function in innate immune responses by binding to molecules on the surface of invading pathogens and initiating host defense reactions. We report the purification and molecular cloning of a cDNA for a 53-kDa beta1,3-glucan-recognition protein from the tobacco hornworm, Manduca sexta. This protein is constitutively expressed in fat body and secreted into hemolymph. The protein contains a region with sequence similarity to several glucanases, but it lacks glucanase activity. It binds to the surface of and agglutinates yeast, as well as gram-negative and gram-positive bacteria. Beta1,3-glucan-recognition protein in the presence of laminarin, a soluble glucan, stimulated activation of prophenoloxidase in plasma, whereas laminarin alone did not. These results suggest that beta1,3-glucan-recognition protein serves as a pattern recognition molecule for beta1,3-glucan on the surface of fungal cell walls. After binding to beta1,3-glucan, the protein may interact with a serine protease, leading to the activation of the prophenoloxidase cascade, a pathway in insects for defense against microbial infection.  相似文献   

14.
Some late embryogeny abundant (LEA) proteins, which are developmentallyregulated in embryos, are also known to be expressed in meophytictissues in response to osmotic stress. Here we report the extentof genetic variability in the level of expression of lea2 andlea3, under stress, in fingermillet and rice seedlings. In bothspecies, the expression of lea genes was seen in the mesophytictissue in response to salinity, partial dehydration and abscisicacid. Tolerant genotypes exhibited higher expression of rab16Aand M3 that code for LEA2 proteins, than susceptible genotypes.A novel approach, that of raising antibodies against the conservedpeptides of these proteins was used to study genetic variabilityin LEA protein levels. Since stress proteins are known to beexpressed in response to mild, non-lethal induction-stress (Uma,Prasad and Udayakumar,Annals of Botany76: 43–49, 1995),we developed an optimum induction protocol for salinity stressin rice and fingermillet. We studied the quantitative differencesin expression of these proteins by western blot and ELISA techniquesin different genotypes. A positive correlation was found betweenLEA2 and LEA3 protein levels and the growth of seedlings duringstress and recovery in both rice and fingermillet, indicatinga possible relevance of these proteins in stress tolerance.Copyright1998 Annals of Botany Company LEA proteins, ABA responsive proteins, induction response, ELISA, fingermillet, rice, salinity-stress.  相似文献   

15.
Intracellular filamentous inclusions made of either the microtubule-associated protein tau or the protein alpha-synuclein define the majority of cases of neurodegenerative disease. Mutations in the tau gene in familial forms of frontotemporal dementia and in the alpha-synuclein gene in familial cases of Parkinson's disease have provided causal links between the dysfunction of these proteins and neurodegeneration. Over the past year, several novel tau gene mutations have been identified and more has been learned about possible mechanisms by which tau gene mutations lead to frontotemporal dementia. Experimental animal models have provided a link between tau filament formation and nerve cell degeneration. Along similar lines, animal models have been produced that result in the formation of alpha-synuclein filaments and the degeneration of dopaminergic nerve cells. Building on previous work, synthetic alpha-synuclein filaments have been shown to exhibit the characteristics of amyloid.  相似文献   

16.
17.
Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt β-catenin pathway at the expense of non-canonical Wnt signaling.  相似文献   

18.
晚期胚胎富集蛋白(late embryogenesis abundant protein,LEA蛋白)是在高等植物胚胎发育晚期大量积累的一类蛋白,根据其结构特点LEA蛋白一般分为6组,其中第3组LEA蛋白(LEA3)含有11个氨基酸串联重复的基元序列,可以形成α-螺旋结构,能在干旱胁迫的环境中保护生物大分子,减轻水份胁迫对植物造成的伤害,与植物抗逆性密切相关。该文就lea3基因及其蛋白的结构、功能、基因表达和应用等进行简要的综述,并对lea3基因及其蛋白今后的研究方向和应用前景进行了展望。  相似文献   

19.
A novel method termed metal oxide affinity chromatography (MOAC) of enriching for phosphorylated proteins and peptides based on the affinity of the phosphate group for Al(OH)(3) is presented here. When compared to commercial phosphoprotein-enrichment kits, this method is more selective, more cost effective and easily applicable to method optimization. The use of glutamic and aspartic acid in the loading buffer significantly enhances selectivity. Standard protein mixtures and complex Arabidopsis thaliana leaf protein extracts were tested for efficacy of enrichment. The method can be applied to proteins extracted using either mild or denaturing conditions. The same Al(OH)(3) material is suitable for the enrichment of phosphopeptides out of a tryptic digest of alpha-casein. Peptide phosphorylation was revealed by beta-elimination of phosphate groups. Enrichment and in vivo phosphorylation of A. thaliana leaf proteins were confirmed with Pro-Q diamond stain. Several of the phosphoprotein candidates that were identified by MS are known to be phosphorylated in vivo in other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号