首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium.  相似文献   

3.
Human cytomegalovirus (HCMV) can bind, fuse, and initiate gene expression in a diverse range of vertebrate cell types. This broad cellular tropism suggests that multiple receptors and/or universally distributed receptors mediate HCMV entry. Our laboratory has recently discovered that certain beta1 and beta3 integrin heterodimers are critical mediators of HCMV entry into permissive fibroblasts (A. L. Feire, H. Koss, and T. Compton, Proc. Natl. Acad. Sci. USA 101:15470-15475, 2004). It has also been reported that epidermal growth factor receptor (EGFR) is necessary for HCMV-mediated signaling and entry (X. Wang, S. M. Huong, M. L. Chiu, N. Raab-Traub, and E. E. Huang, Nature 424:456-461, 2003). Integrins are known to signal synergistically with growth factor receptors, and this coordination was recently reported for EGFR and beta3 integrins in the context of HCMV entry (X. Wang, D. Y. Huang, S. M. Huong, and E. S. Huang, Nat. Med. 11:515-521, 2005). However, EGFR-negative cell lines, such as hematopoietic cells, are known to be infected by HCMV. Therefore, we wished to confirm a role for EGFR in HCMV entry and then examine any interaction between beta1 integrins and EGFR during the entry process. Surprisingly, we were unable to detect any role for EGFR in the process of HCMV entry into fibroblast, epithelial, or endothelial cell lines. Additionally, HCMV did not activate the EGFR kinase in fibroblast cell lines. We first examined HCMV entry into two EGFR-positive or -negative cell lines but observed no increase in entry when EGFR was expressed to high levels. Physically blocking EGFR with a neutralizing antibody in fibroblast, epithelial, or endothelial cell lines or blocking EGFR kinase signaling with a chemical inhibitor in fibroblast cells did not inhibit virus entry. Lastly, we were unable to detect phosphorylation of EGFR in fibroblasts cells in response to HCMV stimulation. Our findings demonstrate that EGFR does not play a significant role in HCMV entry or signaling. These results suggest that specific integrin heterodimers either act alone as the primary entry receptors or interact in conjunction with an additional receptor(s), other than EGFR, to facilitate virus entry.  相似文献   

4.
A ferrichrome receptor, FhuA, was identified in Actinobacillus pleuropneumoniae serotype 7. An isogenic mutant with a deletion in the ferrichrome uptake receptor gene (fhuA) was constructed and examined in an aerosol infection model. The disease caused by the mutant was indistinguishable from disease induced by A. pleuropneumoniae serotype 7 wild-type; an isogenic mutant lacking expression of the exbB gene that is required for the uptake of transferrin-bound iron retained the ability to utilize ferrichrome, thereby indicating that an energy-coupling mechanism involved in ferrichrome transport remains to be identified.  相似文献   

5.
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCgamma binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCgamma as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR.  相似文献   

6.
7.
8.
IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Although regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. To investigate the role of IRAK-4 kinase function in vivo, "knock-in" mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase-deficient IRAK-4 protein (IRAK-4 KD). IRAK-4 kinase was rendered inactive by mutating the conserved lysine residues in the ATP pocket essential for coordinating ATP. Analyses of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice demonstrate lack of cellular responsiveness to stimulation with IL-1beta or a Toll-like receptor 7 (TLR7) agonist. IRAK-4 kinase deficiency prevents the recruitment of IRAK-1 to the IL-1 receptor complex and its subsequent phosphorylation and degradation. IRAK-4 KD cells are severely impaired in NFkappaB, JNK, and p38 activation in response to IL-1beta or TLR7 ligand. As a consequence, IL-1 receptor/TLR7-mediated production of cytokines and chemokines is largely absent in these cells. Additionally, microarray analysis identified IL-1beta response genes and revealed that the induction of IL-1beta-responsive mRNAs is largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1 receptor (IL-1R)/TLR7-mediated induction of inflammatory responses.  相似文献   

9.
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.  相似文献   

10.
Heparan sulfate is required for bone morphogenetic protein-7 signaling   总被引:8,自引:0,他引:8  
Although genetic studies have suggested that heparan sulfate (HS) is involved in bone morphogenetic protein (BMP)-mediated embryonic morphogenesis, it is unclear whether HS is directly involved in BMP-mediated signaling. Here, we investigate the involvement of HS in BMP-7 signaling. We show that HS and heparin chains specifically bind to BMP-7. Digestion of cell-surface HS with heparitinase interferes with BMP-7-mediated Smad phosphorylation in ROS 17/2.8 osteoblastic cells. Inhibiting sulfation of cell-surface HS with chlorate also causes interruption of Smad phosphorylation. Addition of exogenous heparin to ROS 17/2.8 cells prevents BMP-7-mediated Smad phosphorylation rather than enhances the BMP-7 signal, suggesting that HS should be anchored on the plasma membrane for BMP signaling. Moreover, BMP-7 binding to ROS 17/2.8 cells is inhibited by chlorate treatment and exogenous application of heparin. These results demonstrate that BMP-7 specifically binds to cell-surface HS and the BMP-7-HS interaction is required for BMP-7 signaling.  相似文献   

11.
Prominent roles for odorant receptor coding sequences in allelic exclusion   总被引:4,自引:0,他引:4  
Nguyen MQ  Zhou Z  Marks CA  Ryba NJ  Belluscio L 《Cell》2007,131(5):1009-1017
Mammalian odorant receptors (ORs) are crucial for establishing the functional organization of the olfactory system, but the mechanisms controlling their expression remain largely unexplained. Here, we utilized a transgenic approach to explore OR gene regulation. We determined that although olfactory sensory neurons (OSNs) are capable of supporting expression of multiple functional ORs, several levels of control ensure that each neuron normally expresses only a single odorant receptor. Surprisingly, this regulation extends beyond endogenous ORs even preventing expression of transgenes consisting of OR-coding sequences driven by synthetic promoters. Thus, part of the intrinsic feedback system must rely on elements present in the OR-coding sequence. Notably, by expressing the same transgenic ORs precociously in immature neurons, we have overcome this suppression and established a generic method to express any OR in approximately 90% of OSNs. These results provide important insights into the hierarchy of OR gene expression and the vital role of the OR-coding sequence in this regulation.  相似文献   

12.
13.
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.  相似文献   

14.
To investigate the role of protein tyrosine phosphatases in IL-4Ralpha-chain expression and signaling, we first established that SHP-1, but not SHP-2, coimmunoprecipitated with anti-IL-4Ralpha chain Abs in extracts prepared from resting lymphocytes. We further observed that the protein tyrosine phosphatase inhibitors Na3VO4 and pervanadate blocked the striking induction of IL-4Ralpha-chain expression that is mediated by IL-4. However, Na3VO4 did not diminish IL-4-induced Stat6 phosphorylation nor did it block the IL-4-mediated increase in IL-4Ralpha-chain mRNA. The striking inhibition in total cellular IL-4Ralpha-chain and in cell surface IL-4 receptors was associated with an inhibition of biosynthetic labeling of IL-4Ralpha-chain after a 30- min pulse with [35S] methionine, indicating that reduction of IL-4Ralpha-chain protein resulted from either a diminished production of the receptor or a rapid degradation, possibly as a result of phosphorylation of the receptor in an early biosynthetic cellular compartment. Control of newly synthesized IL-4Ralpha-chain protein expression by phosphatase may provide a novel means to regulate IL-4 responsiveness.  相似文献   

15.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

16.
Background:  A vaccine against Helicobacter pylori would be a desirable alternative to antibiotic therapy. Vaccination has been shown to be effective in animal models but the mechanism of protection is poorly understood. Previous studies investigating the gene expression in stomachs of vaccinated mice showed changes in adipokine expression correlated to a protective response. In this study, we investigate a well-characterized adipokine-leptin, and reveal an important role for leptin receptor signaling in vaccine-induced protection.
Materials and Methods:  Leptin receptor signaling-deficient (C57BL/Ks Leprdb), wild-type C57BL/Ks m littermates and C57BL/6 mice were vaccinated, and then challenged with H. pylori . Levels of bacterial colonization, antibody levels, and gastric infiltrates were compared. The local gene expression pattern in the stomach of leptin receptor signaling-deficient and wild-type mice was also compared using microarrays.
Results:  Interestingly, while vaccinated wild-type lean C57BL/6 and C57BL/Ks m mice were able to significantly reduce colonization compared to controls, vaccinated obese C57BL/Ks Leprdb were not. All mice responded to vaccination, i.e. developed infiltrates predominantly of T lymphocytes in the gastric mucosa, and made H. pylori -specific antibodies. A comparison of expression profiles in protected C57BL/6 and nonprotected C57BL/Ks Leprdb mice revealed a subset of inflammation-related genes that were more strongly expressed in nonprotected mice.
Conclusions:  Our data suggest that functional leptin receptor signaling is required for mediating an effective protective response against H. pylori .  相似文献   

17.
Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. The points at which IL-1R signaling is required during this complex, multistep immune response have not been clearly delineated. The role of IL-1R signaling during 2, 4 dinitro-1-fluorobenezene (DNFB) sensitization to induce hapten-specific CD8 effector T cells and in the trafficking of the effector T cells to the DNFB challenge site to elicit the response were investigated using IL-1R deficient mice. DNFB-sensitized IL-1R(-/-) mice had low CHS responses to hapten challenge that were caused in part by marked decreases in hapten-specific CD8 T cell development to IL-17- and IFN-γ-producing cells during sensitization. Hapten-primed wild type CD8 T cell transfer to naive IL-1R(-/-) mice did not result in T cell activation in response to hapten challenge, indicating a need for IL-1R signaling for the localization or activation, or both, of the CD8 T cells at the challenge site. Decreased CD8 T cell priming in sensitized IL-1R(-/-) mice was associated with marked decreases in hapten-presenting dendritic cell migration from the sensitized skin to draining lymph nodes. Transfer of hapten-presenting dendritic cells from wild type donors to naive IL-1R(-/-) mice resulted in decreased numbers of the dendritic cells in the draining lymph nodes and decreased priming of hapten-specific CD8 T cells compared with dendritic cell transfer to naive wild type recipients. These results indicate that IL-1R signaling is required at multiple steps during the course of sensitization and challenge to elicit CHS.  相似文献   

18.
《Neuron》2023,111(6):787-796.e4
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

19.
The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号