首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Crotonobetaine reductase from Escherichia coli consists of two proteins   总被引:1,自引:0,他引:1  
Crotonobetaine reductase from Escherichia coli is composed of two proteins (component I (CI) and component II (CII)). CI has been purified to electrophoretic homogeneity from a cell-free extract of E. coli O44 K74. The purified protein shows l(-)-carnitine dehydratase activity and its N-terminal amino acid sequence is identical to the caiB gene product from E. coli O44 K74. The relative molecular mass of CI has been determined to be 86100. It is composed of two identical subunits with a molecular mass of 42600. The isoelectric point of CI was found to be 4.3. CII was purified from an overexpression strain in one step by ion exchange chromatography on Fractogel EMD TMAE 650(S). The N-terminal amino acid sequence of CII shows absolute identity with the N-terminal sequence of the caiA gene product, i.e. of the postulated crotonobetaine reductase. The relative molecular mass of the protein is 164400 and it is composed of four identical subunits of molecular mass 41500. The isoelectric point of CII is 5.6. CII contains non-covalently bound FAD in a molar ratio of 1:1. In the crotonobetaine reductase reaction one dimer of CI associates with one tetramer of CII. A still unknown low-molecular-mass effector described for the l(-)-carnitine dehydratase is also necessary for crotonobetaine reductase activity. Monoclonal antibodies were raised against the two components of crotonobetaine reductase.  相似文献   

2.
Two proteins, component I (CI) and component II (CII), catalyze the biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp. CI was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. The N-terminal amino acid sequence of CI showed high similarity (80%) to the caiB gene product from Escherichia coli O44K74, which encodes the L(-)-carnitine dehydratase. CI alone was unable to convert crotonobetaine into L(-)-carnitine even in the presence of the cosubstrates crotonobetainyl-CoA or gamma-butyrobetainyl-CoA, which are essential for this biotransformation. The relative molecular mass of CI was determined to be 91.1 kDa. CI is composed of two identical subunits of molecular mass 43.6 kDa. The isoelectric point is 5.0. CII was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. and its N-terminal amino acid sequence showed high similarity (75%) to the caiD gene product of E. coli O44K74. The relative molecular mass of CII was shown to be 88.0 kDa, and CII is composed of three identical subunits of molecular mass 30.1 kDa. The isoelectric point of CII is 4.9. For the biotransformation of crotonobetaine to L(-)-carnitine, the presence of CI, CII, and a cosubstrate (crotonobetainyl-CoA or gamma-butyrobetainyl-CoA) were shown to be essential.  相似文献   

3.
Proteus sp. is able to catalyse the reversible transformation of crotonobetaine into L(-)-carnitine during aerobic growth. Contrary to other Enterobacteriaceae no reduction of crotonobetaine into gamma-butyrobetaine could be detected in the culture supernatants. Activities of L(-)-carnitine dehydratase, carnitine racemasing system and crotonobetaine reductase could be determined enzymatically in cell-free extracts of Proteus sp. Small amounts of gamma-butyrobetaine were found in cell-free extracts, indicating that it accumulates in the cell and inhibits the crotonobetaine reductase. Crotonobetaine and L(-)-carnitine were able to induce enzymes of carnitine metabolism. gamma-Butyrobetaine and glucose repress carnitine metabolism in Proteus sp. Other betaines are neither inducers nor repressors. Monoclonal antibodies against purified CaiA from Escherichia coli O44K74 recognise an analogous protein in cell-free extract of Proteus sp. No cross-reactivity could be detected with monoclonal antibodies against purified CaiB and CaiD from E. coli O44K74.  相似文献   

4.
Different Enterobacteriaceae, such as Escherichia coli, Proteus vulgaris and Proteus mirabilis, are able to convert L(-)-carnitine, via crotonobetaine, into gamma-butyrobetaine in the presence of carbon and nitrogen sources under aerobic conditions. Intermediates of L(-)-carnitine metabolism (crotonobetaine, gamma-butyrobetaine) could be detected by thin-layer chromatography. In parallel, L(-)-carnitine dehydratase, carnitine racemasing system and crotonobetaine reductase activities were determined enzymatically. Monoclonal antibodies against purified CaiB and CaiA from E. coli O44K74 were used to screen cell-free extracts of different Enterobacteriaceae (E. coli ATCC 25922, P. vulgaris, P. mirabilis, Citrobacter freundii, Enterobacter cloacae and Klebsiella pneumoniae) grown under aerobic conditions in the presence of L(-)-carnitine.  相似文献   

5.
6.
Carnitine dehydratase from Escherichia coli 044 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L(-)-carnitine or crotonobetaine. It has been purified 500-fold to electrophoretic homogeneity by chromatography on phenyl-Sepharose, hydroxyapatite, DEAE-Sepharose, second phenyl-Sepharose and finally gel filtration on a Sephadex G-100 column. During the purification procedure a low-molecular-weight effector essential for enzyme activity was separated from the enzyme. The addition of this still unknown effector caused reactivation of the apoenzyme. The relative molecular mass of the apoenzyme has been estimated to be 85,000. It seems to be composed of two identical subunits with a relative molecular mass of 45,000. The purified and reactivated enzyme has been further characterized with respect to pH and temperature optimum (7.8 and 37-42 degrees C), equilibrium constant (Keq = 1.5 +/- 0.2) and substrate specifity. The enzyme is inhibited by thiol reagents. The Km value for crotonobetaine is 1.2.10(-2) M. gamma-Butyrobetaine, D(+)-carnitine and choline are competitive inhibitors of crotonobetaine hydration.  相似文献   

7.
A still unknown low-molecular-mass cofactor essential for the activity of carnitine-metabolizing enzymes (e.g., L-carnitine dehydratase, crotonobetaine reductase) from E. coli has been purified to homogeneity from a cell-free extract of E. coli O44K74. The purity of the cofactor was confirmed by HPLC analysis. Biosynthesis of the unknown compound was only observed when bacteria were cultivated anaerobically in the presence of L-carnitine or crotonobetaine. The determined properties, together with results obtained from UV-visible, (1)H NMR, and mass spectrometry, indicate that the compound in question is a new CoA derivative. The esterified compound was suggested to be gamma-butyrobetaine-a metabolite of carnitine metabolism of E. coli. Proof of structure was performed by chemical synthesis. Besides gamma-butyrobetainyl-CoA, a second new CoA derivative, crotonobetainyl-CoA, was also chemically synthesized. Both CoA derivatives were purified and their structures confirmed using NMR and mass spectrometry. Comparisons of structural data and of the chemical properties of gamma-butyrobetainyl-CoA, crotonobetainyl-CoA, and the isolated cofactor verified that the unknown compound is gamma-butyrobetainyl-CoA. The physical and chemical properties of gamma-butyrobetainyl-CoA and crotonobetainyl-CoA are similar to known CoA derivatives.  相似文献   

8.
The structural gene coding for phenylserine dehydratase from Ralstonia pickettii PS22 was cloned into Escherichia coli cells, and the nucleotide sequence was identified. The predicted amino acid sequence had high sequence similarity to biodegradative and biosynthetic threonine dehydratases from E. coli and serine dehydratase from human liver. Transformed E. coli cells overproduced phenylserine dehydratase, and the recombinant enzyme was purified to homogeneity with a high yield and characterized.  相似文献   

9.
Plasmin(ogen) receptors are expressed by many gram-positive and gram-negative bacteria. We previously isolated a plasmin receptor from a pathogenic group A streptococcal strain (C. C. Broder, R. Lottenberg, G. O. von Mering, K. H. Johnston, and M. D. P. Boyle, J. Biol. Chem. 266:4922-4928, 1991). The gene encoding this plasmin receptor, plr, was isolated from a lambda gt11 library of chromosomal DNA from group A streptococcal strain 64/14 by screening plaques with antibodies raised against the purified streptococcal plasmin receptor protein. The gene was subcloned by using a low-copy-number plasmid and stably expressed in Escherichia coli, resulting in the production of an immunoreactive and functional receptor protein. The DNA sequence of the gene contained an open reading frame encoding 335 amino acids with a predicted molecular weight of 35,787. Upstream of the open reading frame, putative promoter and ribosomal binding site sequences were identified. The experimentally derived amino acid sequences of the N terminus and three cyanogen bromide fragments of the purified streptococcal plasmin receptor protein corresponded to the predicted sequence encoded by plr. The deduced amino acid sequence for the plasmin receptor protein revealed significant similarity (39 to 54% identical amino acid residues) to glyceraldehyde 3-phosphate dehydrogenases.  相似文献   

10.
2,3-Diaminopropionate ammonia-lyase (DAPAL), which catalyzes alpha,beta-elimination of 2,3-diaminopropionate regardless of its stereochemistry, was purified from Salmonella typhimurium. We cloned the Escherichia coli ygeX gene encoding a putative DAPAL and purified the gene product to homogeneity. The protein obtained contained pyridoxal 5'-phosphate and was composed of two identical subunits with a calculated molecular weight of 43,327. It catalyzed the alpha,beta-elimination of both D- and L-2,3-diaminopropionate. The results confirmed that ygeX encoded DAPAL. The enzyme acted on D-serine, but its catalytic efficiency was only 0.5% that with D-2,3-diaminopropionate. The enzymologic properties of E. coli DAPAL resembled those of Salmonella DAPAL, except that L-serine, D-and L-beta-Cl-alanine were inert as substrates of the enzyme from E. coli. DAPAL had significant sequence similarity with the catalytic domain of L-threonine dehydratase, which is a member of the fold-type II group of pyridoxal phosphate enzymes, together with D-serine dehydratase and mammalian serine racemase.  相似文献   

11.
In this work metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli based on the Biochemical System Theory and the Indirect Optimization Method are presented. The model integrates the metabolic and the bioreactor levels using power-law formalism. Based on the S-system model, the Indirect Optimization Method was applied, leading to profiles of parameter values that are compatible with both the physiology of the cells and the bioreactor system operating conditions. This guarantees their viability and fitness and yields higher rates of L-(-)-carnitine production. Experimental results using a high cell density reactor were compared with optimized predictions from the Indirect Optimization Method. When two parameters (the dilution rate and the initial crotonobetaine concentration) were directly changed in the real experimental system to the prescribed optimum values, the system showed better performance in L-(-)-carnitine production (74% increase in production rate), in close agreement with the model's predictions. The model shows control points at macroscopic (reactor operation) and microscopic (molecular) levels where conversion and productivity can be increased. In accordance with the optimized solution, the next logical step to improve the L-(-)-carnitine production rate will involve metabolic engineering of the E. coli strain by overexpressing the carnitine transferase, CaiB, activity and the protein carrier, CaiT, responsible for substrate and product transport in and out of the cell. By this means it is predicted production may be enhanced by up to three times the original value.  相似文献   

12.
We deduced the amino acid sequence of Escherichia coli lysophospholipase L(1) by determining the nucleotide sequence of the pldC gene encoding this enzyme. The translated protein was found to contain 208 amino acid residues with a hydrophobic leader sequence of 26 amino acid residues. The molecular weight of the purified enzyme (20,500) was in good agreement with the predicted size (20,399) of the processed protein. A search involving a data bank showed that the nucleotide sequence of the pldC gene was identical to those of the apeA and tesA genes encoding protease I and thioesterase I, respectively. Consistent with the identity of the pldC gene with these two genes, the enzyme purified from E. coli overexpressing the pldC gene showed both protease I and thioesterase I activities.  相似文献   

13.
The gene encoding cyclohexadienyl dehydratase (denoted pheC) was cloned from Pseudomonas aeruginosa by functional complementation of a pheA auxotroph of Escherichia coli. The gene was highly expressed in E. coli due to the use of the high-copy number vector pUC18. The P. aeruginosa cyclohexadienyl dehydratase expressed in E. coli was purified to electrophoretic homogeneity. The latter enzyme exhibited identical physical and biochemical properties as those obtained for cyclohexadienyl dehydratase purified from P. aeruginosa. The activity ratios of prephenate dehydratase to arogenate dehydratase remained constant (about 3.3-fold) throughout purification, thus demonstrating a single protein having broad substrate specificity. The cyclohexadienyl dehydratase exhibited Km values of 0.42 mM for prephenate and 0.22 mM for L-arogenate, respectively. The pheC gene was 807 base pairs in length, encoding a protein with a calculated molecular mass of 30,480 daltons. This compares with a molecular mass value of 29.5 kDa determined for the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since the native molecular mass determined by gel filtration was 72 kDa, the enzyme probably is a homodimer. Comparison of the deduced amino acid sequence of pheC from P. aeruginosa with those of the prephenate dehydratases of Corynebacterium glutamicum, Bacillus subtilis, E. coli, and Pseudomonas stutzeri by standard pairwise alignments did not establish obvious homology. However, a more detailed analysis revealed a conserved motif (containing a threonine residue known to be essential for catalysis) that was shared by all of the dehydratase proteins.  相似文献   

14.
D-aspartate is present at high concentrations in the tissues of Scapharca broughtonii, and its production depends on aspartate racemase. This enzyme is the first aspartate racemase purified from animal tissues and unique in its pyridoxal 5'-phosphate (PLP)-dependence in contrast to microbial aspartate racemases thus far characterized. The enzyme activity is markedly increased in the presence of AMP and decreased in the presence of ATP. To analyze the structure-function relationship of the enzyme further, we cloned the cDNA of aspartate racemase, and then purified and characterized the recombinant enzyme expressed in Escherichia coli. The cDNA included an open reading frame of 1,017 bp encoding a protein of 338 amino acids, and the deduced amino acid sequence contained a PLP-binding motif. The sequence exhibits the highest identity (43-44%) to mammalian serine racemase, followed mainly by threonine dehydratase. These relationships are fully supported by phylogenetic analyses of the enzymes. The active recombinant aspartate racemase found in the Escherichia coli extract represented about 10% of total bacterial protein and was purified to display essentially identical physicochemical and catalytic properties with those of the native enzyme. In addition, the enzyme showed a dehydratase activity toward L-threo-3-hydroxyaspartate, similar to the mammalian serine racemase that produces pyruvate from D- and L-serine.  相似文献   

15.
L-threo-3-Hydroxyaspartate dehydratase (L-threo-3-hydroxyaspartate hydro-lyase), which exhibited specificity for L-threo-3-hydroxyaspartate (K(m)=0.74 mM, V(max)=37.5 micromol min(-1) (mg protein)(-1)) but not for D-threo or D, L-erythro-3-hydroxyaspartate, was purified from a cell-free extract of Pseudomonas sp. T62. The activity of the enzyme was inhibited by hydroxylamine and EDTA, which suggests that pyridoxal 5'-phosphate and divalent cations participate in the enzyme reaction. The NH(2)-terminal amino acid sequence showed significant similarity to the Saccharomyces cerevisiae YKL218c gene product, a hypothetical threonine dehydratase. However, the purified enzyme showed no threonine dehydratase activity.  相似文献   

16.
Sequence of the Citrobacter freundii OS60 chromosomal ampC beta-lactamase gene   总被引:12,自引:0,他引:12  
The Citrobacter freundii OS60 ampC beta-lactamase gene was sequenced and found to encode a 380-amino-acid-long precursor with a 19-residue signal peptide. The mature protein has a predicted molecular mass of 39781 Da. The first 60 residues of the purified enzyme, as determined by sequential Edman degradation, are identical to the amino acid sequence inferred from the gene sequence. Also, the amino acid composition determined for the purified beta-lactamase and that given by the gene sequence are in good agreement. 77% of the amino acid positions hold identical residues in the C. freundii and Escherichia coli K12 chromosomal AmpC beta-lactamases. This clearly puts the C. freundii enzyme into the class C of beta-lactamases. Of the 68 amino-terminal residues determined for the Enterobacter cloacae P99 beta-lactamase, 44 are identical to the corresponding residues of the C. freundii enzyme. All three enzymes, as well as that of Pseudomonas aeruginosa 18S/H are highly similar around the active-site serine at position 64 of the mature protein.  相似文献   

17.
The Escherichia coli gene murZ, encoding the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase, has been cloned and sequenced. Identified by screening an E. coli genomic library for clones that conferred phosphomycin resistance, murZ encoded a 419-amino-acid polypeptide and was mapped to 69.3 min on the E. coli chromosome. MurZ protein was purified to near homogeneity and found to have the expected UDP-N-acetylglucosamine enolpyruvyl transferase activity. Sequence analysis of the predicted product revealed 44% identity to OrfR from Bacillus subtilis (K. Trach, J.W. Chapman, P. Piggot, D. LeCoq, and J.A. Hoch, J. Bacteriol. 170:4194-4208, 1988), suggesting that orfR may also encode a UDP-N-acetylglucosamine enolpyruvyl transferase enzyme. MurZ is also homologous to the aromatic amino acid biosynthetic enzyme enolpyruvyl shikimate phosphate synthase, the other enzyme known to catalyze an enolpyruvyl transfer.  相似文献   

18.
The intracellular beta-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50 degrees C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with beta-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with beta-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-beta-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50 degrees C.  相似文献   

19.
We have cloned and expressed in Escherichia coli a gene encoding a 15,000-apparent-molecular-weight peptidoglycan-associated outer membrane lipoprotein (PAL) of Haemophilus influenzae. The nucleotide sequence of this gene encodes an open reading frame of 153 codons with a predicted mature protein of 134 amino acids. The amino acid composition and sequence of the predicted mature protein agree with the chemically determined composition and partial amino acid sequence of PAL purified from H. influenzae outer membranes. We have also identified a second gene from H. influenzae that encodes a second 15,000-apparent-molecular-weight protein which is recognized by antiserum against PAL. This protein has been shown to be a lipoprotein. The nucleotide sequence of this gene encodes an open reading frame of 154 codons with a predicted mature protein of 136 amino acids and has limited sequence homology with that of the gene encoding PAL. Southern hybridization analysis indicates that both genes exist as single copies in H. influenzae chromosomal DNA. Both genes encode polypeptides which have amino-terminal sequences similar to those of reported membrane signal peptides and are associated primarily with the outer membrane when expressed in E. coli.  相似文献   

20.
A Klebsiella ozaenae nitrilase which converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to 3,5-dibromo-4-hydroxybenzoic acid has been expressed at 5-10% of the total protein in Escherichia coli from a cloned K. ozaenae DNA segment and purified 10.3-fold to homogeneity. The purified polypeptide is molecular weight 37,000 in size, but the active form of the enzyme is composed of two identical subunits. The purified enzyme exhibits a pH optimum of 9.2 and a temperature optimum of 35 degrees C. The purified enzyme is also quite sensitive to thiol-specific reagents. The nitrilase is highly specific for bromoxynil as substrate with a Km of 0.31 mM and Vmax of 15 mumol of NH3 released/min/mg protein. Analysis of bromoxynil-related substrates indicates the enzyme exhibits preference for compounds containing two meta-positioned halogen atoms. Nucleotide sequence analysis of a 1,212-base pair PstI-HincII DNA segment containing the locus (bxn) encoding the bromoxynil-specific nitrilase reveals a single open reading frame encoding a polypeptide 349 amino acids in length. The predicted sequence of the purified enzyme was derived from the nucleotide sequence of the bxn gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号