首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic replacement rates (Ra) for glucose and free fatty acids (FFA) were determined during rest, exercise, and diving conditions in the gray seal using bolus injections of radiotracers. In the exercise experiments the seal swam at a metabolic rate elevated twofold over resting Ra for glucose and FFA while resting were similar to values found in terrestrial mammals and other marine mammal species. During exercise periods glucose turnover increased slightly while FFA turnover changes were variable. However, the energetic demands of exercise could not be met by the increase in the replacement rates of glucose or FFA even if both were completely oxidized. Under diving conditions the tracer pool displayed radically different specific activity curves indicative of the changes in perfusion and metabolic rate associated with a strong dive response. Since the radiotracer curves during exercise and diving differed qualitatively and quantitatively, it is possible that similar studies on freely diving animals can be used to assess the role of the diving response during underwater swimming in nature.  相似文献   

2.
Peter W. Hochachka led a grand life of science adventure and left as his legacy a whole new field--biochemical adaptation. Oxygen was at the core of Peter's career and his laboratory made major contributions to our understanding of how animals deal with variation in oxygen availability in many forms. He analyzed the molecular mechanisms that support facultative anaerobiosis, studied muscle exercise metabolism for high speed flight, swimming and running, investigated mammalian diving on many trips to the Antarctic to study Weddell seals, and probed the metabolic and genetic adaptations that provide optimal hypoxia tolerance for humans residing at high altitudes. His work illuminated both biochemical and physiological mechanisms that are used to optimize aerobic metabolism, to compensate for hypoxic insults, and to conserve energy by strong metabolic rate depression under anoxia. His articles, books and lectures galvanized the field with leading-edge insights and theories and he consistently challenged comparative biochemists to use their unique model systems to explore the range and breadth of animal strategies of biochemical adaptation. Lessons drawn from my training in Peter's laboratory have led me on continuing explorations of adaptations in enzyme function, signal transduction, gene expression, and antioxidant defenses ranging over systems of anoxia tolerance, freezing survival, estivation, and mammalian hibernation.  相似文献   

3.
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.  相似文献   

4.
Fractals have been applied to describe the complexity of behavioral displays in a range of organisms. Recent work suggests that they may represent a promising tool in the quantification of subtle behavioral responses in marine mammals under chronic exposure to disturbance. This paper aims at introducing the still seldom used fractals to the broader community of marine mammal scientists. We first briefly rehearse some of the fundamental principles behind fractal theory and review the previous uses of fractals in marine mammal science. We subsequently introduce two methods that may be used to assess the complexity of marine mammal diving patterns, and we apply them to the temporal dynamics of the diving patterns of killer whales in the presence and absence of sea kayaks, the sequential behavior of harbor and gray seals in environments with distinct levels of anthropogenic influence, and southern right whales with and without calves. We discuss the ecological relevance of identifying fractal properties in marine mammal behavior, and the potential strength of the fractal behavioral parameters in comparison to more standard behavioral metrics. We finally briefly address the relevance fractal methods may have for the design and implementation of management and conservation strategies.  相似文献   

5.
Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey.  相似文献   

6.
Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.  相似文献   

7.
A review of thermoregulation in marine mammals led to the following conclusions: very little is known about thermoregulation in large cetaceans. The only measured value for the metabolic rate of a whale, albeit a young one, was substantially higher than the predicted value for a terrestrial mammal of similar size. Very small and newborn marine mammals rely on a high metabolic heat production to sustain their body temperature during exposure to cold or in the water. The considerable insulation of some adult marine mammals may absolve them from the need for a high level of heat production. One marine mammal in tropical or subtropical waters is hypometabolic. There is evidence for a powerful control of thermoregulatory mechanisms by the anterior hypothalamic/preoptic region of the brain in two species. Thermoregulation in marine mammals during exercise remains paradoxical.  相似文献   

8.
Some marine mammals can dive to depths approaching 2000 m. At these hydrostatic pressures (200 atm), some fish species show alterations in enzyme structure and function that make them pressure-tolerant. Do marine mammals also possess biochemical adaptations to withstand such pressures? In theory, biochemical alterations might occur at the control of enzymatic pathways, by impacting cell membrane fluidity changes or at a higher level, such as cellular metabolism. Studies of marine mammal tissues show evidence of all of these changes, but the results are not consistent across species or diving depth. This review discusses whether the elevated body temperature of marine mammals imparts pressure tolerance at the biochemical level, whether there are cell membrane structural differences in marine mammals and whether whole, living cells from marine mammals alter their metabolism when pressure stressed. We conclude that temperature alone is probably not protective against pressure and that cell membrane composition data are not conclusive. Whole cell studies suggest that marine mammals either respond positively to pressure or are not impacted by pressure. However, the range of tissue types and enzyme systems that have been studied is extremely limited and needs to be expanded before more general conclusions about how these mammals tolerate elevated pressures on a biochemical level can be drawn.  相似文献   

9.
Adult marine mammal muscles rely upon a suite of adaptations for sustained aerobic metabolism in the absence of freely available oxygen (O2). Although the importance of these adaptations for supporting aerobic diving patterns of adults is well understood, little is known about postnatal muscle development in young marine mammals. However, the typical pattern of vertebrate muscle development, and reduced tissue O2 stores and diving ability of young marine mammals suggest that the physiological properties of harbor seal (Phoca vitulina) pup muscle will differ from those of adults. We examined myoglobin (Mb) concentration, and the activities of citrate synthase (CS), β-hydroxyacyl coA dehydrogenase (HOAD), and lactate dehydrogenase (LDH) in muscle biopsies from harbor seal pups throughout the nursing period, and compared these biochemical parameters to those of adults. Pups had reduced O2 carrying capacity ([Mb] 28–41% lower than adults) and reduced metabolically scaled catabolic enzyme activities (LDH/RMR 20–58% and CS/RMR 29–89% lower than adults), indicating that harbor seal pup muscles are biochemically immature at birth and weaning. This suggests that pup muscles do not have the ability to support either the aerobic or anaerobic performance of adult seals. This immaturity may contribute to the lower diving capacity and behavior in younger pups. In addition, the trends in myoglobin concentration and enzyme activity seen in this study appear to be developmental and/or exercise-driven responses that together work to produce the hypoxic endurance phenotype seen in adults, rather than allometric effects due to body size.  相似文献   

10.
The contributions of Peter Hochachka to the development of comparative and adaptational biochemistry are substantial. In particular, he and his academic offspring made major contributions to the understanding of the metabolism of molluscs and fishes. These two large taxonomic groups each have marine, freshwater and terrestrial/semiterrestrial representatives, and their mitochondrial metabolism has been shaped by these environmental conditions. In particular, the importance of amino acids and lipids as energy sources has interesting correlations with the environment and the osmotic strategy used. In marine molluscs, amino acids are important aerobic energy sources, and are used as osmolytes and participate in anaerobic metabolism. In marine elasmobranchs, amino acids and ketone bodies, but not lipids per se, are important energy sources in extrahepatic tissues. Marine and freshwater teleost fish by contrast use lipids as an extrahepatic energy source with minimal use of ketone bodies. Furthermore, ketone bodies are important in the metabolism of freshwater and terrestrial but not marine molluscs. The bases for these different metabolic plans may lie in the solute systems used by the different groups (e.g. amino acids in marine molluscs and urea in marine elasmobranchs). The various metabolic options used by fishes and molluscs indicate the plasticity of metabolic design in an environmental context.  相似文献   

11.
This short review examines some of my personal experiences with Dr. Peter Hochachka, as a mentor and friend, and how his encouragement led to the research undertaken in my laboratory over the past three decades. Specifically, our work using the fish hepatocyte preparation as a model cell system is reviewed. The hepatocyte is an ideal cellular system that can be used to probe hepatic physiology and biochemistry. The impact of insulin, glucagon and related peptides, and catecholamines is discussed from the perspective of core and diverse functions of these key vertebrate metabolic hormones. Each hormone that operates in fish species was studied in manners similar to that of mammals, but it appears that the role of glucagon-like peptide-1 (GLP-1) in particular differs substantially from that in mammals. The receptors for each of these fish hormones seem structurally and in some cases functionally quite distinct from those in mammals. Few fish hormone receptor sequences are available, but fish genomists are rapidly adding new sequence information to the existing databases, so our view of the evolution of vertebrate hormone receptors will become clearer very quickly.  相似文献   

12.
Since the 1990s, Brucella strains not matching the characteristics of any of the six conventional species have been isolated worldwide from marine mammals. In this study, 31 Brucella strains isolated from various marine mammals were examined for their oxidative metabolic pattern on 12 amino-acid and carbohydrate substrates. Three main oxidative profiles different from those of the Brucella terrestrial mammal strains were identified for the marine mammal strains: one gathering strains isolated from pinnipeds and two gathering strains from cetaceans. Thus, both oxidative metabolism results and previous molecular studies are in agreement with the proposal of two new Brucella species, Brucella pinnipediae and Brucella cetaceae, to classify the Brucella strains isolated from marine mammals, and are also in accordance with a classification of species of the Brucella genus based on host preference.  相似文献   

13.
Scaling of insulation in seals and whales   总被引:1,自引:0,他引:1  
We describe scaling of morphological variables that influence total insulation in eight species of marine mammals ranging in average size from 35 to 30000 kg. We also calculate total heat loss and the partitioning of heat loss through the body surface and appendages. For the eight species investigated, heat loss in 0°C water is appreciably higher than the predicted basal metabolic rates for small species such as the ringed seal. Rorquals, on the other hand, will probably not need to raise their metabolic rates to keep warm. At rest, 10–30% of the heat production of a resting animal is lost through flippers, fins and flukes. This amount can increase to 70–80% during moderate exercise. Whole-body conductance scales with body size in the same way in marine as in terrestrial mammals, although conductance is higher for a given body size in a marine mammal.  相似文献   

14.
Skeletal muscles of marine mammals must support the metabolic demands of exercise during periods of reduced blood flow associated with the dive response. Enhanced muscle buffering could support anaerobic metabolic processes during apnea, yet this has not been fully investigated in cetaceans. To assess the importance of this adaptation in the diving and swimming performance of cetaceans, muscle buffering capacity due to non-bicarbonate buffers was measured in the longissimus dorsi of ten species of odontocete and one mysticete. Immature specimens from a subset of these species were studied to assess developmental trends. Fetal and neonatal cetaceans have low buffering capacities (range: 34.8–53.9 slykes) that are within the range measured for terrestrial mammals. A lengthy developmental period, independent of muscle myoglobin postnatal development, is required before adult levels are attained. Adult cetacean buffering capacities (range: 63.7–94.5 slykes) are among the highest values recorded for mammals. Cetacean species that demonstrate extremely long dive durations or high burst speed swimming tend to have greater buffering capacities. However, the wide range of body size across cetaceans may complicate these trends. Enhanced muscle buffering capacity may enable small-bodied species to extend breath-hold beyond short aerobic dive limits for foraging or predator evasion when necessary.  相似文献   

15.
The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O2??), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O2?? production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.  相似文献   

16.
Dolphins have adapted their anatomic structures to survive in the water environment and so far, the behaviour of their respiratory system during diving has not been fully understood, since they being protected species cannot be subjected to invasive analysis. Aim of this work is to model the tracheo-bronchial tree of the bottlenose dolphin Tursiops truncatus to study its behaviour during diving by coupling experimental in vitro mechanical characterisation of airways tissues to finite element computational analyses. Furthermore, a comparison was performed between the mechanical behaviour of tracheo-bronchial trees of dolphins and that of the goat, a terrestrial mammal, whose conformation of the upper airways is similar to that of the human, to determine how different structures respond to pressure in a controlled experimental set-up. The comparison between the goat and dolphin airways' mechanical behaviour highlights a lower collapsibility of the dolphin structure due to higher stiffness, lack of musculature and irregular shape of cartilaginous rings. Our data showed that the air entrapped into the airways plays a key role in avoiding the collapse. This effect is enhanced when accounting for the air flow escaping the alveoli that start to collapse during descent, even at depth as shallow as 10m of sea water. The comparison between airways behaviour of marine and terrestrial mammals may help in shedding a light on the biomechanical behaviour of human airways during breath-holding diving.  相似文献   

17.
When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR?=?1.48SF?-?8.87) and bottlenose dolphins (HR?=?0.99SF?+?2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.  相似文献   

18.
Starting even before the end of World War II, the discipline of comparative physiology and biochemistry experienced a period of unprecedented growth and development that pioneers in this field thought would never end. However, by the mid-1970s many of the major mechanistic problems in the field were pretty well understood in principle, and by the mid-1980s workers in the field widely recognized that the discipline was at the point of diminishing returns. One response to this was disillusionment, which turned out to be premature because the field was already absorbing molecular biology tools which has now caused a kind of renaissance in mechanistic physiology studies. The second major response to the sense of disillusionment led to a search for new approaches, and out of this endeavor the newly rejuvenated field of evolutionary physiology arose, and this research area too is now in a growth phase. These general patterns of growth and development in our discipline as a whole are particularly clearly evident in the field of aquatic mammals and birds. Between the 1930s and the 1970s, studies of diving physiology and biochemistry made great progress in mechanistically explaining the basic diving response of aquatic mammals and birds. Key components of the diving response (apnea, bradycardia, peripheral vasoconstriction, redistribution of cardiac output) were found in essentially all species analyzed and were generally taken to be biological adaptations. By the mid-1970s, this approach to unraveling the diving response had run 'out of steam' and was in conceptual stasis. The breakthrough which gave renewal to the field at this time was the development of microprocessor based monitoring of diving animals in their natural environments, which led to a flurry of studies mostly confirming the essential outlines of the diving response based upon laboratory studies and firmly placing it into a proper biological context, underlining its plasticity and species specificities. Now as we begin a new millenium, despite ever more detailed field monitoring of physiology, behavior and ecology, studies aimed at improving understanding of physiological mechanisms in diving are again approaching a point of diminishing returns. To avoid another conceptual stasis, what seems required are new initiatives which may arise from two differing approaches. The first is purely experimental, relying on magnetic resonance imaging (MRI) and spectroscopy (MRS) to expand the framework of the original 'diving response' concept. The second, evolutionary study of the diving response, is synthetic, linked to both field and laboratory studies. To date the evolution of the diving response has only been analyzed in pinnipeds and from these studies two kinds of patterns have emerged. (1) Some physiological and biochemical characters, required and used in diving animals, are highly conserved not only in pinnipeds but in all vertebrates; these traits are necessarily similar in all pinnipeds and include diving apnea, bradycardia, tissue specific hypoperfusion, and hypometabolism of hypoperfused tissues. (2) Another group of functionally linked characters are more malleable and include (i) spleen mass, (ii) blood volume, and (iii) hemoglobin (Hb) pool size. Increases in any of these traits (or in a morphological character, body size) improve diving capacity. Assuming that conserved physiological function means conserved sequences in specific genes and their products (and that evolving function requires changes in such sequences), it is possible to rationalize both the above trait categories in pinniped phylogeny. However, it is more difficult for molecular evolution theory to explain how complex regulatory systems like those involved in bradycardia and peripheral vasoconstriction remain the same through phylogenetic time than it is to explain physiological change driven by directional natural selection.  相似文献   

19.
Marine mammals have a spectacular suite of respiratory adaptations to deal with the extreme pressures associated with deep diving. In particular, maintaining a functional pulmonary surfactant system at depth is critical for marine mammals to ensure that inspiration is possible upon re-emergence. Pulmonary surfactant is secreted from alveolar type II (ATII) cells and is crucial for normal lung function. It is not known whether ATII cells have the ability to continue to secrete pulmonary surfactant under pressure, or how secretion is maintained and controlled. We show here that surfactant secretion in California sea lions (Zalophus californianus) was increased after high pressures (25 and 50 atm) of short duration (30 min), but was unaffected by high pressures of long duration (2 h). This is in contrast to a similar sized terrestrial mammal (sheep), where surfactant secretion was increased after high pressures of both long and short duration. Z. californianus and terrestrial mammals also show similar responses to stimulatory hormones and autonomic neurotransmitters. It therefore seems that an increase in the quantity of surfactant in seal lungs after diving is most likely caused by mechanostimulation induced by pressure and volume changes, and that seals are adapted to maintain constant levels of surfactant under long periods of high pressure.  相似文献   

20.
Marine mammals can be infected with zoonotic pathogens and show clinical signs of disease, or be asymptomatic carriers of such disease agents. While isolated cases of human disease from contact with marine mammals have been reported, no evaluation of the risks associated with marine mammal work has been attempted. Therefore, we designed a survey to estimate the risk of work-related injuries and illnesses in marine mammal workers and volunteers. The 17-question survey asked respondents to describe their contact with marine mammals, injuries sustained, and/or illnesses acquired during their period of marine mammal exposure. Most respondents, 88% (423/483), were researchers and rehabilitators. Of all respondents, 50% (243/483) reported suffering an injury caused by a marine mammal, and 23% (110/483) reported having a skin rash or reaction. Marine mammal work-related illnesses commonly reported included: 'seal finger' (Mycoplasma spp. or Erysipelothrix rhusiopathiae), conjunctivitis, viral dermatitis, bacterial dermatitis, and non-specific contact dermatitis. Although specific diagnoses could not be confirmed by a physician through this study, severe illnesses were reported and included tuberculosis, leptospirosis, brucellosis, and serious sequelae to seal finger. Risk factors associated with increased odds of injury and illness included prolonged and frequent exposure to marine mammals; direct contact with live marine mammals; and contact with tissue, blood, and excretions. Diagnosis of zoonotic disease was often aided by veterinarians; therefore, workers at risk should be encouraged to consult with a marine mammal veterinarian as well as a physician, especially if obtaining a definitive diagnosis for an illness becomes problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号