首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two recently introduced multicolor FISH approaches, cross-species color banding (also termed Rx-FISH) and multiplex FISH using painting probes derived from somatic cell hybrids retaining fragments of human chromosomes, were applied in a comparative molecular cytogenetic study of higher primates. We analyzed these "chromosome bar code" patterns to obtain an overview of chromosomal rearrangements that occurred during higher primate evolution. The objective was to reconstruct the ancestral genome organization of hominoids using the macaque as outgroup species. Approximately 160 individual and discernible molecular cytogenetic markers were assigned in these species. Resulting comparative maps allowed us to identify numerous intra-chromosomal rearrangements, to discriminate them from previous contradicting chromosome banding interpretations and to propose an ancestral karyotype for hominoids. From 25 different chromosome forms in an ancestral karyotype for all hominoids of 2N=48 we propose 21. Probes for chromosomes 2p, 4, 9 and Y were not informative in the present experiments. The orangutan karyotype was very similar to the proposed ancestral organization and conserved 19 of the 21 ancestral forms; thus most chromosomes were already present in early hominoid evolution, while African apes and human show various derived changes.  相似文献   

2.
Chromosome phylogenies of man,great apes,and old world monkeys   总被引:3,自引:0,他引:3  
Jean De Grouchy 《Genetica》1987,73(1-2):37-52
The karyotypes of man and of the closely related Pongidae — chimpanzee, gorilla, and orangutan — differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular.The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements — inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin — and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985).A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution, in human chromosomal diseases, and after ionizing irradiation do not seem to be distributed at random.Chromosomal rearrangements observed in evolution are known to be harmful in humans, leading to complete or partial sterility through abnormal offspring in the heterozygous state but not in the homozygous state. They then become a robust reproductive barrier capable of creating new species, far more powerful than gene mutations advocated by neo-Darwinism. The homozygous state may be achieved especially through inbreeding, which must have played a major role during primate evolution. Whether new species derive from unique individuals or couples (Adam and Eve), or through a populational process, remains a matter for discussion.  相似文献   

3.
The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.  相似文献   

4.
5.
6.
The mouse genome has undergone extensive chromosome rearrangement relative to the human genome since these species last shared a common ancestor. One possible consequence of these rearrangements is the deletion of genes that are located within evolutionary breakpoint regions. In this article, we present evidence of four human genes (COL21A1, STK17A, GPR145 and ARHI) that are located in regions corresponding to evolutionary breakpoints in rodents and lack mouse and rat orthologues. We propose that "evolutionary breakpoint-associated gene deletion" is an unexpected consequence of evolutionary chromosome rearrangement, and we describe a novel mechanism through which genes can be lost during evolution.  相似文献   

7.
Since the first chromosome painting study between human and strepsirrhine primates was performed in 1996, nearly 30 species in Strepsirrhini, Dermoptera and Scandentia have been analyzed by cross-species chromosome painting. Here, the contribution of chromosome painting data to our understanding of primate genome organization, chromosome evolution and the karyotype phylogenetic relationships within strepsirrhine primates, Dermoptera and Scandentia is reviewed. Twenty-six to 43 homologous chromosome segments have been revealed in different species with human chromosome-specific paint probes. Various landmark rearrangements characteristic for each different lineage have been identified, as cytogenetic signatures that potentially unite certain lineages within strepsirrhine primates, Dermoptera and Scandentia.  相似文献   

8.
Precise breakpoint definition of chromosomal rearrangements using conventional banding techniques often fails, especially when more than two breakpoints are involved. The classic banding procedure results in a pattern of alternating light and dark bands. Hence, in banded chromosomes a specific chromosomal band is rather identified by the surrounding banding pattern than by its own specific morphology. In chromosomal rearrangements the original pattern is altered and therefore the unequivocal determination of breakpoints is not obvious. The multicolor banding technique (mBAND, see Chudoba et al., 1999) is able to identify breakpoints unambiguously, even in highly complex chromosomal aberrations. The mBAND technique is presented and illustrated in a case of intrachromosomal rearrangement with seven breakpoints all having occurred on one chromosome 16, emphasizing the unique analyzing power of mBAND as compared to conventional banding techniques.  相似文献   

9.
M C Edwards  R A Gibbs 《Genomics》1992,14(3):590-597
The molecular phylogeny of Alu and other repeated sequences in the human genome provides clues to events during primate evolution. A subclass of human Alu's has been previously identified as dimorphic insertions within members of the medium reiteration frequency (mer) class of repeats, reflecting the complicated sequence of insertion and radiation events leading to the current human genome structure. One dimorphic Alu is located within a previously unidentified mer family member, in the first intron of the human T4 (CD4) gene. The insertion (Alu+ allele) has a frequency of approximately 70% in Europeans and Africans and is homozygous in 20 Asian samples. Polymerase chain reaction amplification, direct DNA sequencing, and Southern analysis using oligonucleotide probes revealed that the Alu- allele was derived from the Alu+ allele by loss of part of the inserted sequence. Comparison with a tightly linked marker within the human genome and studies of baboon DNA samples revealed that the original insertion was a relatively early event in primate evolution, but that the Alu sequence loss leading to the dimorphism has occurred much more recently. Loss of Alu insertions therefore represents one mechanism for the generation of human Alu dimorphisms.  相似文献   

10.
Multicolor FISH probe sets and their applications   总被引:5,自引:0,他引:5  
  相似文献   

11.
During the last decade not only multicolor fluorescence in situ hybridization (FISH) using whole chromosome paints as probes, but also numerous chromosome banding techniques based on FISH have been developed for the human and for the murine genome. This review focuses on such FISH-banding techniques, which were recently defined as 'any kind of FISH technique, which provide the possibility to characterize simultaneously several chromosomal subregions smaller than a chromosome arm. FISH-banding methods fitting that definition may have quite different characteristics, but share the ability to produce a DNA-specific chromosomal banding'. While the standard chromosome banding techniques like GTG lead to a protein-related black and white banding pattern, FISH-banding techniques are DNA-specific, more colorful and, thus, more informative. For some, even high-resolution FISH-banding techniques the development is complete and they can be used for whole genome hybridizations in one step. Other FISH-banding methods are only available for selected chromosomes and/or are still under development. FISH-banding methods have successfully been applied in research in evolution- and radiation-biology, as well as in studies on the nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are an important tool with the potential to partly replace the conventional banding techniques in the future.  相似文献   

12.
We have previously found with the microcell hybrid-based "elimination test" that human chromosome 3 transferred into murine or human tumor cells regularly lost certain 3p regions during tumor growth in SCID mice. The most common eliminated region, CER1, is approximately 2.4 Mb at 3p21.3. CER1 breakpoints were clustered in approximately 200-kb regions at both telomeric and centromeric borders. We have also shown, earlier, that tumor-related deletions often coincide with human/mouse synteny breakpoints on 3p12-p22. Here we describe the results of a comparative genomic analysis on the CER1 region in Caenorhabditis elegans, Drosophila melanogaster, Fugu rubripes, Gallus gallus, Mus musculus, Rattus norvegicus, and Canis familiaris. First, four independent synteny breaks were found within the CER1 telomeric breakpoint cluster region, comparing human, dog, and chicken genomes, and two independent synteny breaks within the CER1 centromeric breakpoint cluster region, comparing human, mouse, and chicken genomes, suggesting a nonrandom involvement of tumor breakpoint regions in chromosome evolution. Second, both CER1 breakpoint cluster regions show recent tandem duplications (seven Zn finger protein family genes at the telomeric and eight chemokine receptor genes at the centromeric side). Finally, all genes from these regions underwent horizontal evolution in mammals, with formation of new genes and expansion of gene families, which were displayed in the human genome as tandem gene duplications and pseudogene insertions. In contrast the CER1 middle region contained evolutionarily well-conserved solitary genes and a minimal amount of retroposed genes. The coincidence of evolutionary plasticity with CER1 breakpoints may suggest that regional structural instability is expressed in both evolutionary and cancer-associated chromosome rearrangements.  相似文献   

13.
传统显带分析技术以每条染色体独特的显带带型为依据,提供染色体形态结构的基本信息,用于染色体核型的初步分析。然而有些染色体重排由于涉及的片断太小或具有相似的带型,用该方法难以探测或准确描绘。多元荧光原位杂交(M-FISH),光谱核型分析(SKY),FISH-显带分析技术是染色体特异的多色荧光原位杂交技术(mFISH)。它们能够探测出传统显带分析不能发现的染色体异常,提供更准确的核型。M-FISH和SKY均以组合标记的染色体涂染探针共杂交为基础,二者的不同在于观察仪器和分析方法上。它们可对中期染色体涂片进行快速准确分析,描绘复杂核型,确认标记染色体,主要用于恶性疾病的细胞遗传学诊断分析。FISH-显带分析技术以FISH技术为基础,能同时检测多条比染色体臂短的染色体亚区域。符合该定义的FISH-显带分析技术各有特点,其共同特点是都能产生DNA特异的染色体条带。这些条带有更多色彩,能提供更多信息。FISH-显带分析技术已经成功地被用于进化生物学、放射生物学以及核结构的研究,同时也被用于产前、产后以及肿瘤细胞遗传学诊断,是很有潜力的工具。  相似文献   

14.
We used reciprocal chromosome painting with both African green monkey (C. aethiops) and human chromosome specific DNA probes to delineate homologous regions in the two species. Probes were derived by fluorescence-activated chromosome flow sorting and then were reciprocally hybridized to metaphase spreads of each species. Segments in the size range of a single chromosome band were identified, demonstrating the sensitivity of the approach when comparing species that diverged more than 20 million years ago. Outgroup analysis shows that the great difference in diploid numbers between the African green monkey (2n = 60) and humans (2n = 46) is mainly owing to fissions, and the direction of change is towards increasing diploid numbers. However, most break points apparently lie outside of the centromere regions, suggesting that the changes were not solely Robertsonian as has been previously assumed. No reciprocal translocations have occurred in the phylogenetic lines leading to humans or African green monkeys. The primate paints established here are a valuable tool to establish interspecies homology, to define rearrangements, and to determine the mechanisms of chromosomal evolution in primate species. Received: 10 December 1998 / Accepted: 18 February 1999  相似文献   

15.
The evolutionary history of human chromosome 7   总被引:6,自引:0,他引:6  
We report on a comparative molecular cytogenetic and in silico study on evolutionary changes in human chromosome 7 homologs in all major primate lineages. The ancestral mammalian homologs comprise two chromosomes (7a and 7b/16p) and are conserved in carnivores. The subchromosomal organization of the ancestral primate segment 7a shared by a lemur and higher Old World monkeys is the result of a paracentric inversion. The ancestral higher primate chromosome form was then derived by a fission of 7b/16p, followed by a centric fusion of 7a/7b as observed in the orangutan. In hominoids two further inversions with four distinct breakpoints were described in detail: the pericentric inversion in the human/African ape ancestor and the paracentric inversion in the common ancestor of human and chimpanzee. FISH analysis employing BAC probes confined the 7p22.1 breakpoint of the pericentric inversion to 6.8 Mb on the human reference sequence map and the 7q22.1 breakpoint to 97.1 Mb. For the paracentric inversion the breakpoints were found in 7q11.23 between 76.1 and 76.3 Mb and in 7q22.1 at 101.9 Mb. All four breakpoints were flanked by large segmental duplications. Hybridization patterns of breakpoint-flanking BACs and the distribution of duplicons suggest their presence before the origin of both inversions. We propose a scenario by which segmental duplications may have been the cause rather than the result of these chromosome rearrangements.  相似文献   

16.
We have identified and molecularly cloned 46 kb of human DNA from chromosome 22 using a probe specific for the Philadelphia (Ph') translocation breakpoint domain of one chronic myelocytic leukemia (CML) patient. The DNAs of 19 CML patients were examined for rearrangements on chromosome 22 with probes isolated from this cloned region. In 17 patients, chromosomal breakpoints were found within a limited region of up to 5.8 kb, for which we propose the term "breakpoint cluster region" (bcr). The two patients having no rearrangements within bcr lacked the Ph' chromosome. The highly specific presence of a chromosomal breakpoint within bcr in Ph'-positive CML patients strongly suggests the involvement of bcr in this type of leukemia.  相似文献   

17.
Partial and complete genome duplications occurred during evolution and resulted in the creation of new genes and gene families. We identified a novel and intricate human gene family located primarily in regions of segmental duplications on human chromosome 1. We named it NBPF, for neuroblastoma breakpoint family, because one of its members is disrupted by a chromosomal translocation in a neuroblastoma patient. The NBPF genes have a repetitive structure with high intragenic and intergenic sequence similarity in both coding and noncoding regions. These similarities might expose these genomic regions to illegitimate recombination, resulting in structural variation in the NBPF genes. The encoded proteins contain a highly conserved domain of unknown function, which we have named the NBPF repeat. In silico analysis combined with the isolation of multiple full-length cDNA clones showed that several members of this gene family are abundantly expressed in a large variety of tissues and cell lines. Strikingly, no discernable orthologues could be identified in the completed genomes of fruit fly, nematode, mouse, or rat, but sequences with low homology could be isolated from the draft canine and bovine genomes. Interestingly, this gene family shows primate-specific duplications that result in species-specific arrays of NBPF homologous sequences. Overall, this novel NBPF family reflects the continuous evolution of primate genomes that resulted in large physiological differences, and its potential role in this process is discussed.  相似文献   

18.
MOTIVATION: Establishment of intra-cellular life involved a profound re-configuration of the genetic characteristics of bacteria, including genome reduction and rearrangements. Understanding the mechanisms underlying these phenomena will shed light on the genome rearrangements essential for the development of an intra-cellular lifestyle. Comparison of genomes with differences in their sizes poses statistical as well as computational problems. Little efforts have been made to develop flexible computational tools with which to analyse genome reduction and rearrangements. RESULTS: Investigation of genome reduction and rearrangements in endosymbionts using a novel computational tool (GRAST) identified gathering of genes with similar functions. Conserved clusters of functionally related genes (CGSCs) were detected. Heterogeneous gene and gene cluster non-functionalization/loss are identified between genome regions, functional gene categories and during evolution. Results show that gene non-functionalisation has accelerated during the last 50 MY of Buchnera's evolution while CGSCs have been static.  相似文献   

19.
荧光原位杂交技术(FISH)在鱼类遗传学研究中的应用及前景   总被引:5,自引:0,他引:5  
荧光原位杂交技术(fluoresceceinsituhybridization,FISH)是一种在分子水平上进行了细胞遗传学研究的得力工具,本文综述了近年来FISH技术在鱼类的基因定位,性别鉴定,染色体变异及种间杂交等研究中的应用;并将此技术在鱼类的基因定位,早期性别鉴定,染色体重排与进化,染色体鉴别与分类及杂交鉴定等方面的应用前景作一展望。  相似文献   

20.
V V Sukhodolets 《Genetika》1985,21(5):693-706
A review of literature data reveals that for the last years, the molecular biology techniques have been of an increasing use in the study of the Escherichia coli genome, having supplemented the standard genetic mapping. For the proper understanding of the Escherichia coli genome organization, recombinational events occurring in the course of evolution should be considered. The bacterial genome seems to carry traces of both "long-term" evolution, possibly responsible for appearance of the bacterial cell itself, and "current" evolution, consisting mainly of periodic genome entering by new plasmid-originated genes. It is supposed that in the process of stabilization within a genome, every new gene undergoes a stage of the "transgene", that is the gene situated in a transposon on the chromosome. In parallel with integration of new genes into the genome, some genes deleting should also take place. The formation of deletions could occur by unequal crossing over in segments of direct homologous repeats which seem to be ordinarily revealed in the experimental study of the tandem gene duplications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号