首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The origin and subsequent evolution of new genes have been considered as an important source of genetic and phenotypic diversity in organisms. Dog breeds show great phenotypic diversity for morphological, physiological, and behavioral traits. However, the contributions of newly originated retrogenes, which provide important genetic bases for dog species differentiation and adaptive traits, are largely unknown. Here, we analyzed the dog genome to identify new RNA‐based duplications and comprehensively investigated their origin, evolution, functions in adaptive traits, and gene movement processes. First, we totally identified 3,025 retrocopies including 476 intact retrogenes, 2,518 retropseudogenes, and 31 chimerical retrogenes. Second, selective pressure along with ESTs expression analysis showed that most of the intact retrogenes were significantly under stronger purifying selection and subjected to more functional constraints when compared to retropseudogenes. Furthermore, a large number of retrocopies and chimerical retrogenes that occurred approximately 22 million years ago implied a burst of retrotransposition in the dog genome after the divergence time between dog and its closely related species red fox. Interestingly, GO and pathway analyses showed that new retrogenes had expanded in glutathione biosynthetic/metabolic process which likely provided important genetic basis for dogs' adaptation to scavenge human waste dumps. Finally, consistent with the results in human and mouse, a significant excess of functional retrogenes movement on and off the X chromosome in the dog confirmed a general pattern of gene movement process in mammals which was likely driven by natural selection or sexual antagonism. Together, these results increase our understanding that new retrogenes can reshape the dog genome and provide further exploration of the molecular mechanisms underlying the dogs' adaptive evolution.  相似文献   

2.
3.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.  相似文献   

4.
5.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

6.
To better understand the molecular mechanisms and genetic basis of human disease, we systematically examine relationships between 3,949 genes, 62,663 mutations and 3,453 associated disorders by generating a three-dimensional, structurally resolved human interactome. This network consists of 4,222 high-quality binary protein-protein interactions with their atomic-resolution interfaces. We find that in-frame mutations (missense point mutations and in-frame insertions and deletions) are enriched on the interaction interfaces of proteins associated with the corresponding disorders, and that the disease specificity for different mutations of the same gene can be explained by their location within an interface. We also predict 292 candidate genes for 694 unknown disease-to-gene associations with proposed molecular mechanism hypotheses. This work indicates that knowledge of how in-frame disease mutations alter specific interactions is critical to understanding pathogenesis. Structurally resolved interaction networks should be valuable tools for interpreting the wealth of data being generated by large-scale structural genomics and disease association studies.  相似文献   

7.
The cuticle is the outermost layer of the avian eggshell, whose protein constituents remain virtually unknown. We hypothesize that cuticle components play a major role in microbial resistance, since eggs with incomplete or absent cuticle are more susceptible to bacterial contamination. In this study we extracted proteins from the outermost non-calcified layer of the cuticle of chicken eggs and subjected them to LC/MS/MS proteomic analysis. We identified 47 cuticle proteins with high confidence and reproducibility. Two proteins, similar to Kunitz-like protease inhibitor and ovocalyxin-32 (a carboxypeptidase A inhibitor), were the most abundant of the cuticle proteins. A number of proteins known to have antimicrobial activity in the egg were detected (lysozyme C, ovotransferrin, ovocalyxin-32, cystatin, ovoinhibitor) as well as possible new candidates (myeloperoxidase, ovocalyxin-36 and members of the SERPIN family). This is the first comprehensive report of cuticle proteome, a starting point to determine cuticle function and the molecular basis of its antimicrobial properties.  相似文献   

8.
BACKGROUND: About 30 languages of southern Africa, spoken by Khwe and San, are characterized by a repertoire of click consonants and phonetic accompaniments. The Jumid R:'hoansi (!Kung) San carry multiple deeply coalescing gene lineages. The deep genetic diversity of the San parallels the diversity among the languages they speak. Intriguingly, the language of the Hadzabe of eastern Africa, although not closely related to any other language, shares click consonants and accompaniments with languages of Khwe and San. RESULTS: We present original Y chromosome and mtDNA variation of Hadzabe and other ethnic groups of Tanzania and Y chromosome variation of San and peoples of the central African forests: Biaka, Mbuti, and Lisongo. In the context of comparable published data for other African populations, analyses of each of these independently inherited DNA segments indicate that click-speaking Hadzabe and Jumid R:'hoansi are separated by genetic distance as great or greater than that between any other pair of African populations. Phylogenetic tree topology indicates a basal separation of the ancient ancestors of these click-speaking peoples. That genetic divergence does not appear to be the result of recent gene flow from neighboring groups. CONCLUSIONS: The deep genetic divergence among click-speaking peoples of Africa and mounting linguistic evidence suggest that click consonants date to early in the history of modern humans. At least two explanations remain viable. Clicks may have persisted for tens of thousands of years, independently in multiple populations, as a neutral trait. Alternatively, clicks may have been retained, because they confer an advantage during hunting in certain environments.  相似文献   

9.
In a representative sample of primate species, including simians (Catarrhini and Platyrrhini) and prosimians (Lemuriformes and Lorisiformes), high-resolution, early replication banding revealed a homoeologous early replicating segment at the ends of both sex chromosomes. The DXYZ2 element, a repeated sequence specific for the human pseudoautosomal region, is conserved in the genomes of all primate species studies and is specifically localized in the distal early replicating segments of the X and Y chromosomes. Thus, cytogenetic and molecular evidence is presented of a highly conserved sex-chromosomal segment in primates. The pseudoautosomal behavior of this segment is discussed.  相似文献   

10.

Background

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before.

Results

Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium.

Conclusions

We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1135) contains supplementary material, which is available to authorized users.  相似文献   

11.
αI domain integrins have been found in the ascidian Ciona intestinalis. We produced Ciona α1I domain as a recombinant protein. It did not recognize fibril-forming collagens or bind to GFOGER or other similar motifs in triple-helical peptides. No GFOGER motifs were found in Ciona collagens. As Ciona α1I bound to collagen IX, we propose that before the emergence of GFOGER-dependent collagen receptors in vertebrates, αI domain integrins might have been able to bind to collagen with alternative mechanisms.  相似文献   

12.
Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.  相似文献   

13.
The alkaline phosphatase (AP) is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP). The crystal structure reveals many differences from other APs: 1) the catalytic residue is a threonine instead of serine, 2) there is no third metal ion binding pocket, and 3) the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily.  相似文献   

14.
The neutral sphingomyelinase (N-SMase) is considered a major candidate for mediating the stress-induced production of ceramide, and it plays an important role in cell-cycle arrest, apoptosis, inflammation, and eukaryotic stress responses. Recent studies have identified a small region at the very N-terminus of the 55 kDa tumour necrosis factor receptor (TNF-R55), designated the neutral sphingomyelinase activating domain (NSD) that is responsible for the TNF-induced activation of N-SMase. There is no direct association between TNF-R55 NSD and N-SMase; instead, a protein named factor associated with N-SMase activation (FAN) has been reported to couple the TNF-R55 NSD to N-SMase. Since the three-dimensional fold of N-SMase is still unknown, we have modeled the structure using the protein fold recognition and threading method. Moreover, we propose models for the TNF-R55 NSD as well as the FAN protein in order to study the structural basis of N-SMase activation and regulation. Protein-protein interaction studies suggest that FAN is crucially involved in mediating TNF-induced activation of the N-SMase pathway, which in turn regulates mitogenic and proinflammatory responses. Inhibition of N-SMase may lead to reduction of ceramide levels and hence may provide a novel therapeutic strategy for inflammation and autoimmune diseases. Molecular dynamics (MD) simulations were performed to check the stability of the predicted model and protein-protein complex; indeed, stable RMS deviations were obtained throughout the simulation. Furthermore, in silico docking of low molecular mass ligands into the active site of N-SMase suggests that His135, Glu48, Asp177, and Asn179 residues play crucial roles in this interaction. Based on our results, these ligands are proposed to be potent and selective N-SMase inhibitors, which may ultimately prove useful as lead compounds for drug development.  相似文献   

15.
16.
17.
The human Y chromosome carries 2000 copies of a tandemly repeated sequence, 2.47 kb long, which constitutes about 20% of the DNA of this chromosome. These sequences are localised on the tip of the long arm of the Y chromosome. Related sequences are present in DNA of females with a related but distinguishable restriction pattern. These autosomal sequences are distributed in tandem arrays on a number of autosomes. Related sequences are also present in gorilla and chimpanzee. In gorilla they resemble the human sequences in their restriction map but are not found on the Y chromosome whereas in chimpanzee the related sequences behave as a dispersed repeat. Changes in the level of methylation of this sequence in different tissues of human males can be detected with the lowest levels found in sperm and placental DNA.  相似文献   

18.
Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs) and may influence the development of vascular disease. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. Here we describe a chemically defined protocol in which hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated toward SMCs (>80% MYH11(+) and ACTA2(+)), which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Notably, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. This differentiation approach will have broad applications in modeling origin-dependent disease susceptibility and in developing bioengineered vascular grafts for regenerative medicine.  相似文献   

19.
20.
Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication‐related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号