首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dramatic escape response of some scallops is modified by reproductive investment and by acclimation temperature. Despite considerable knowledge of the physiology of the escape response, functional links between escape response performance, organismal rates of oxygen uptake, and tissue metabolic capacities are little known. We measured oxygen consumption rates (standard, maximal, and aerobic scope), escape behavior (initial and repeat performance), tissue mass, condition index, protein content, and tissue metabolic capacities in the Iceland scallop Chlamys islandica to examine links between these parameters. Postexercise oxygen consumption rates were positively linked to contraction rate (repeat test) and to pyruvate kinase activity in the adductor muscle but negatively linked to digestive gland wet mass. Swimming behavior was mainly related to activity of glycolytic enzymes, and enzymatic activities were related to anatomic parameters. Scallop behavior and physiology change with size, both within our samples and on a larger scale. Small scallops showed more intense swimming activity and had higher arginine kinase activities but lower glycolytic enzyme activities in their adductor muscle than larger scallops. This corresponds to the ontogenetic change in susceptibility to predation and in habitat use observed in C. islandica.  相似文献   

2.
In scallops, gametogenesis leads to mobilization of glycogen and proteins from the adductor muscle towards the gonad. This mobilization is likely to diminish the metabolic capacities of the adductor muscle and thereby the scallops' escape response. We examined the escape response in terms of number of valve claps until exhaustion, rate of clapping and the recovery during and after valve closure in adult scallops, Chlamys islandica, sampled at different stages in the reproductive cycle (immature, mature, before and after spawning). In parallel, we measured muscle glycogen, protein and phosphoarginine contents, the oxidative capacity of mitochondria isolated from the adductor muscle and levels of muscle enzymes which are active during exercise and recovery. The number of claps (24-26), rate of clapping ( approximately 13 clapsmin(-1)) and phosphoarginine and arginine kinase levels were similar during the different reproductive stages. All immature scallops responded to restimulation immediately after opening their valves, while only 62% of mature, 82% of prespawned and 38% of spawned scallops responded. Immature animals completely recovered their initial swimming capacity within 4 h of opening their valves, but mature, prespawned and spawned scallops needed 18, 12 and 18 h, respectively. Overall phasic adductor muscle from mature, prespawned and spawned animals showed decreased glycogen phosphorylase, phosphofructokinase, pyruvate kinase (except for prespawned), octopine dehydrogenase and citrate synthase levels, a deterioration of the oxidative capacity of mitochondria and a marked decrease in glycogen content compared to immature scallops. Therefore, during gonadal maturation and spawning, C. islandica did not change its clapping capacity, but slowed its recuperation from exhausting burst exercise, both during and after valve closure, likely due to the decreased metabolic capacity of the adductor muscle.  相似文献   

3.
Summary Red and white muscle in the two Antarctic notothenioid fishes Dissostichus mawsoni and Pagothenia borchgrevinki show a rate of postmortem fall of 0.2 pH units per hour, which is close to the rate reported for mammalian muscle at 30°C, but the plateau value is reached several hours earlier in the Antarctic fish, indicating significantly lower stores of initial glycogen. A few particles, most likely representing glycogen, were seen in P. borchgrevinki white muscle and D. mawsoni red muscle, whereas predictably fewer glycogen still was evident in D. mawsoni white muscle. When large numbers of mitochondria and lipid stores were encountered in combination with a small amount of glycogen, we concluded that aerobic metabolism is dominant and that the two species examined would not use white trunk muscle for sustained or slow swimming. Rapid contractions of white trunk muscle as in prey capture or predator evasion are more likely.  相似文献   

4.
To examine whether Atlantic cod maintain constant hierarchies of sprint speeds and muscle metabolic capacities under different feeding regimes, the physiological capacities of individual cod were followed through a starvation-feeding-starvation cycle. We examined sprint speeds and maximal enzyme activities in white-muscle biopsies at each period. We measured the glycolytic enzymes, phosphofructokinase (PFK) and lactate dehydrogenase (LDH), the mitochondrial enzyme, cytochrome C oxidase (CCO), and the biosynthetic enzyme, nucleotide diphosphate kinase (NDPK). Sprint speeds were measured in a laser diode/photocell-timed raceway. As expected, the feeding regime had a marked impact on the physiological capacities of cod, but the responses differed for sprint-swimming and muscle metabolic capacities. The different enzyme activities as well the condition index generally decreased during the first starvation, improved with feeding, and fell again during the second starvation. In contrast, sprint performance improved after feeding but did not fall with the second starvation. Although both the enzyme activities and the sprint speeds showed considerable interindividual variation, sprint speeds were not significantly correlated with the enzyme activities. The hierarchy of sprint performance of the cod was maintained, regardless of the preceding feeding regime, whereas those of muscle metabolic capacities were not.  相似文献   

5.
为了确保黑鲷(Acanthopagrus schlegeli)和美国红鱼(Sciaenops ocellatus)在开放海域的养殖产量和鱼类养殖福利,在20℃下,对体长差异性不显著(P>0.05)的两种鱼进行续航游泳能力测试。首先,确定不同流速下的耐力游泳时间,然后选择耐力游泳时间为150min时的速度进行续航游泳实验。其中黑鲷和美国红鱼分别被迫以3.15和4.32 BL/s的恒定游泳速度,进行0、30min、60min、90min、120min和150min的测试,解剖鱼获得肌肉、血液和肝脏,测定样品在6个时间点的代谢物浓度,每个时间点保证3组有效数据。对0和150min的实验组对比,结果显示,两种鱼肝糖原、背肌乳酸和血糖浓度差异显著(P<0.05),肌肉糖原浓度差异不显著(P>0.05)。双变量相关分析显示,随着疲劳程度增加,肝糖原浓度下降,背肌乳酸和血糖上升。灰度关联分析和主成分分析显示,血糖和肝糖原浓度是影响疲劳的主要因素,但黑鲷相比美国红鱼,其浓度变化范围更大。综上:(1)美国红鱼比黑鲷拥有更强的游泳能力,而且黑鲷和美国红鱼不适合养殖在流速超过3.15和4....  相似文献   

6.
7.
The two morphotypes (leiurus and trachurus) of the three-spined stickleback Gasterosteus aculeatus , caught at the same location and time in the River Scheldt (Belgium), were investigated for physiological differences in swimming capacity and energetics associated with migration. Critical and optimal swimming speeds, maximum speed and gait-transition speed were significantly higher for the trachurus type. Standard metabolic rate and active metabolic rate were also higher for trachurus, as was scope for activity. Energy stores (protein, lipid and glycogen in liver and white muscle) were mostly similar in the two types, but lipids in trachurus liver tissue were significantly higher.  相似文献   

8.
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degrees C and 10 degrees C. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degrees C, maximum velocity at all other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P. borchgrevinki to either -1 degrees C or 4 degrees C for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degrees C and 10 degrees C. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degrees C or 4 degrees C for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of 1 degrees C to 10 degrees C. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.  相似文献   

9.
Previous results show that juvenile shortnose sturgeon are steady swimmers and, compared with salmonids, generally have low critical swimming (UCrit) and endurance swimming capacities. Most studies on swimming capacities of sturgeon, and other fishes, include those where fish have only been swum once and the metrics of swimming performance are assessed (e.g., time swum, speed achieved). Under natural conditions, there are ample instances where fish undergo multiple swimming cycles when traversing fish ways, culverts and other sources of fast water flow. While some evidence exists for salmonids, the effects of repeat swimming are not well known for sturgeon. The current study consisted of two experiments. The first examined the UCrit of juvenile shortnose sturgeon following three consecutive swimming trials with a 30 min recovery period between subsequent tests. The second examined the endurance swimming capacities of juvenile shortnose sturgeon following three consecutive swimming trials with a 60 min recovery period between subsequent tests. Our findings indicate that (i) UCrit was consistent (~2 body lengths/s) among swimming trials; (ii) significant individual variation exists between individuals in the endurance swimming trials; and (iii) consistent results exist for individuals across swimming trials in both the UCrit and the endurance swimming tests. These results suggest that juvenile shortnose sturgeon have a high recovery capacity, and their behaviour and morphology likely reflect aspects of their swimming capacities.  相似文献   

10.
Atlantic cod, Gadus morhua, respond to starvation first by mobilising hepatic lipids, then muscle and hepatic glycogen and finally muscle proteins. The dual role of proteins as functional elements and energetic reserves should lead to a temporal hierarchy of mobilisation where the nature of a function dictates its conservation during starvation. We examined (1) whether lysosomal and anti-oxidant enzymes in liver and white muscle are spared during prolonged starvation, (2) whether the responses of these enzymes in muscle vary longitudinally. Hepatic contents of lysosomal proteases decreased with starvation, whereas those of catalase (CAT) increased and lysosomal enzymes of carbohydrate metabolism and glutathione S-transferase (GST) did not change. In white muscle, starvation decreased the specific activity of lysosomal enzymes of carbohydrate degradation and doubled that of cathepsin D (CaD). The activity of anti-oxidant enzymes and acid phosphatase in muscle was unchanged with starvation. In white muscle neither lysosomal enzymes nor anti-oxidant enzymes varied significantly with sampling position. In cod muscle, antioxidant enzymes, CaD and acid phosphatase are spared during a period of starvation that decreases lysosomal enzymes of carbohydrate metabolism and decreases glycolytic enzyme activities. In cod liver, the anti-oxidant enzymes, CAT and GST, were also spared during starvation.  相似文献   

11.
The relationship between burst swimming performance and muscle metabolic capacities was examined in juvenile and adult threespine sticklebacks (Gasterosteus aculeatus). The absolute burst speed measured during startle responses increased markedly with growth of juveniles, but this positive allometry did not continue in adults. The allometry of phosphofructokinase (PFK), lactate dehydrogenase, creatine phosphokinase activities and protein concentrations was positive in juveniles and became negative in adults. The lower activities in adults may reflect the mobilization of muscle proteins for reproduction. In juveniles, absolute burst swimming and muscle glycolytic capacity show a similar allometry. However, when the influence of factors such as size and age was removed by calculating residuals from multiple regressions, variation in muscle enzyme activities in juveniles did not explain variation in their swimming capacity. In adults, interindividual variation in PFK and cytochrome C oxidase activities was correlated with variation in the burst swimming capacity. Apparently, mobilization of muscle proteins in support of reproduction may lead muscle enzyme levels to limit burst performance. Accepted: 9 November 1998  相似文献   

12.
The physiological responses to exercise and stress of the Antarctic labriform swimmer Pagothenia borchgrevinki were compared to the temperate labriform swimmers Notolabrus celidotus and Notolabrus fucicola. Basic swimming characteristics were very similar amongst the three species with P. borchgrevinki showing a reduced capacity for exercise. P. borchgrevinki showed large increases in haematocrit (Hct) following exercise that were not seen in the temperate species. Lactate dehydrogenase (LDH) activities were high in the white myotomal muscle from the Antarctic fish, with a distinct indication of metabolic cold adaptation in this enzyme. Nevertheless, although the temperate fish showed elevated muscle lactate concentrations following either exercise or electrical stimulation the Antarctic fish did not. The data suggest that poor anaerobic performance of white muscle is associated with the labriform mode of locomotion.  相似文献   

13.
In vivo (31)P-nuclear magnetic resonance (NMR) spectroscopy was used to measure the levels of ATP, phospho-l-arginine (PLA), and inorganic phosphate in the adductor muscle of the Antarctic scallop Adamussium colbecki and two temperate species, Aequipecten opercularis and Pecten maximus. Graded exercise regimes from light (one to two contractions) to exhausting (failing to respond to further stimulation) were imposed on animals of each species at its habitat temperature (0 degrees vs. 12 degrees C, respectively). NMR spectroscopy allowed noninvasive measurement of metabolite levels and intracellular pH at high time resolution (30-120-s intervals) during exercise and throughout the recovery period. Significant differences were shown between the magnitude and form of the metabolic response with increasing levels of exercise in each species. After exhaustion, short-term (first 15 min) muscle alkalosis was followed by acidosis of up to 0.2 pH units during the recovery process. Aequipecten opercularis had similar resting muscle PLA levels compared with either P. maximus or A. colbecki but used a fivefold greater proportion of this store per contraction and was able to perform only half as many claps (maximum of 24) as the other species before exhaustion. All species regenerated their PLA store at a similar rate despite different environmental temperatures. These findings argue for some cold compensation of muscular performance and recovery capacities in the Antarctic scallop, albeit at levels of performance similar to scallops with low activity lifestyles from temperate latitudes.  相似文献   

14.
 Burst swimming increased haematocrit (partly from erythrocyte swelling) in the cryopelagic nototheniid Pagothenia borchgrevinki, but not in the benthic species Trematomus bernacchii. Erythrocyte nucleotides, which regulate haemoglobin-oxygen affinity, remained constant. Plasma cortisol was high in all captive fish and raised questions about the effects of chronic stress on metabolic measurements from Antarctic fish held in captivity. Glycogen was reduced in white trunk muscle, but not in the red pectoral muscle of exercised P. borchgrevinki. Red pectoral muscle glycogen was nearly 3 times higher in T. bernacchii than in P. borchgrevinki but post-exercise lactate rises were modest. Lactate values were, however, higher in exercised P. borchgrevinki white muscle than in T. bernacchii, and correlated with muscle-buffering capacity. Resting adenylate energy charge (AEC) was unexpectedly low in both species and reduced with exercise only for white muscle in P. borchgrevinki. While it appears that the capacity for burst swimming is limited by endogenous metabolic fuels, confirmation of low resting values of ATP and AEC in Antarctic fishes requires the development of methods that maintain high phosphocreatine levels in the muscle. Received: 12 February 1996/Accepted:1 May 1996  相似文献   

15.
Atlantic cod populations live in a wide thermal range and can differ genetically and physiologically. Thermal sensitivity of metabolic capacity and swimming performance may vary along a latitudinal gradient, to facilitate performance in distinct thermal environments. To evaluate this hypothesis, we compared the thermal sensitivity of performance in two cod stocks from the Northwest Atlantic that differ in their thermal experience: Gulf of St Lawrence (GSL) and Bay of Fundy (BF). We first compared the metabolic, physiological and swimming performance after short-term thermal change to that at the acclimation temperature (7°C) for one stock (GSL), before comparing the performance of the two stocks after short-term thermal change. For cod from GSL, standard metabolism (SMR) increased with temperature, while active metabolism (AMR, measured in the critical swimming tests), EMR (metabolic rate after an exhaustive chase protocol), aerobic scope (AS) and critical swimming speeds (U crit and U b–c) were lower at 3°C than 7 or 11°C. In contrast, anaerobic swimming (sprint and burst-coasts in U crit test) was lower at 11 than 7 or 3°C. Factorial AS (AMR SMR−1) decreased as temperature rose. Time to exhaustion (chase protocol) was not influenced by temperature. The two stocks differed little in the thermal sensitivities of metabolism or swimming. GSL cod had a higher SMR than BF cod despite similar AMR and AS. This led factorial AS to be significantly higher for the southern stock. Despite these metabolic differences, cod from the two stocks did not differ in their U crit speeds. BF cod were better sprinters at both temperatures. Cod from GSL had a lower aerobic cost of swimming at intermediate speeds than those from BF, particularly at low temperature. Only the activity of cytochrome C oxidase (CCO) in white muscle differed between stocks. No enzymatic correlates were found for swimming capacities, but oxygen consumption was best correlated with CCO activity in the ventricle for both stocks. Overall, the stocks differed in their cost of maintenance, cost of transport and sprint capacity, while maintaining comparable thermal sensitivities.  相似文献   

16.
In the field, Atlantic cod face seasonal changes in food availability that in turn lead to changes in condition. To examine the physiological consequences of these changes in condition, we measured routine metabolic rate (RMR) to estimate standard metabolic rate (SMR), active metabolic rate (AMR), aerobic scope, critical swimming speed (Ucrit), cost of transport, sprint performance, time to exhaustion, and postexhaustion metabolic rate (EMR) for 24 Atlantic cod from the Gulf of St. Lawrence. Cod were measured at their initial condition (condition factor of 0.676+/-0.076) and after 9 wk of feeding (condition factor of 0.923+/-0.096). These levels of condition are representative of wild cod in the Gulf of St. Lawrence during the spring and during the fall-early winter, respectively. The improved condition did not change mass-specific SMR. However, mass-specific AMR, aerobic scope, and EMR decreased with the improvement in condition. The various measures of swimming performance were affected differently. Ucrit increased and cost of transport at 1.3 and 1.5 body lengths s(-1) decreased with improved condition, but the cost of transport at 0.3, 0.9, 1.1, 1.7, and 1.9 body lengths s(-1), sprint performance, and time to exhaustion did not change. Hierarchies for the speed at first burst-coast, the proportion of Ucrit supported by burst-coasts, and time to exhaustion were maintained with the improvement in condition. The relationships between metabolic rates and swimming performance differed with condition level, with stronger correlations apparent in the cod at their initial condition. Given the low condition of wild cod stocks, these responses indicate that reduced performance, due to both maintenance of metabolic expenditures and modified swimming capacities, may impair survival under conditions of reduced food availability.  相似文献   

17.
Endurance capacity and the effects of different post-exercise states on skeletal muscle glycogen have been studied in rats trained by swimming or running and in sedentary controls. Regular endurance exercise resulted in increased skeletal muscle glycogen stores. A greater depletion was observed in trained animals than in non-trained animals after a training bout or exhaustive exercise. While muscle glycogen levels did not reflect a differential training stimulus (running vs swimming), swimming as a measure of exhaustive exercise was deemed invalid because of the ability of trained swimmers to avoid stenuous exercise by an alteration of swimming pattern.  相似文献   

18.
Muscle protein decreases only during prolonged starvation of Atlantic cod (Gadus morhua, Gadidae), but in the absence of protein renewal, muscle metabolic capacities may decrease before marked loss of muscle protein. This study aimed at elucidating the threshold at which decreases in growth and condition reduce muscle metabolic capacities, as well as identifying the indicators that best explain changes in metabolic capacities. To generate a wide spectrum of individual growth rates, condition factors and proximate compositions, cod showing different initial condition were fed or starved for different periods of time. The relationships between muscle proteins and metabolic enzyme activities (LDH and CCO) on one hand, and growth rate, condition factor, hepato- and gonadosomatic index and muscle and liver water and energy contents, on the other hand, were examined through linear regression models. Multiple linear regressions explained a large proportion of the observed variability in proteins and enzyme activities. Changes in LDH and CCO activities were not driven by changes in growth rate. Muscle water was the only significant correlate for both enzymes. Enzyme activities decreased as soon as muscle water began to rise. Increases in water content from 79 to 92% resulted in a 10-fold decrease in LDH and CCO activities.  相似文献   

19.
Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs.  相似文献   

20.
Synopsis Virtually all characteristics of tunas and billfishes reflect their highly charged lifestyles as apex predators in the oceanic pelagic environment. The adaptations they possess for efficient and rapid swimming, efficient and rapid food processing, turnover of nutrients and storage and mobilization of internal fuel supplies, and for rapid recovery rates, are discussed. Overall, tunas and billfishes are designed for high performance, at both sustainable and burst swimming speeds, but there are several differences between tunas and billfishes. Tunas' aerobic metabolic capacities exceed those of ectothermic fishes, including billfishes and other scombrids, by virtue of their elevated red muscle temperatures, and because heart and white muscle aerobic capacities are significantly greater in tunas. The adaptations for high performance involve some costs, including the need for a constant high energy input to sustain high metabolic rates, high activity levels, and endothermy, Yet, tunas and billfishes have adopted successful lifestyles, as evidenced by their large numbers and biomass within the marine environment. Although our knowledge of these fishes has increased dramatically during the past 15 years, there are major gaps in our understanding of the metabolic biochemistry and physiology of these fishes, and these are highlighted so that additional research can be directed towards filling these gaps.Paper from the International Union of Biological Societies symposium The biology of tunas and billfishes: an examination of life on the knife edge, organized by Richard W. Brill and Kim N. Holland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号