首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

2.
Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition.  相似文献   

3.
Regulation of cell volume is a fundamental property of all animal cells and is of particular importance in skeletal muscle where exercise is associated with a wide range of cellular changes that would be expected to influence cell volume. These complex electrical, metabolic and osmotic changes, however, make rigorous study of the consequences of individual factors on muscle volume difficult despite their likely importance during exercise. Recent charge-difference modelling of cell volume distinguishes three major aspects to processes underlying cell volume control: (i) determination by intracellular impermeant solute; (ii) maintenance by metabolically dependent processes directly balancing passive solute and water fluxes that would otherwise cause cell swelling under the influence of intracellular membrane-impermeant solutes; and (iii) volume regulation often involving reversible short-term transmembrane solute transport processes correcting cell volumes towards their normal baselines in response to imposed discrete perturbations. This review covers, in turn, the main predictions from such quantitative analysis and the experimental consequences of comparable alterations in extracellular pH, lactate concentration, membrane potential and extracellular tonicity. The effects of such alterations in the extracellular environment in resting amphibian muscles are then used to reproduce the intracellular changes that occur in each case in exercising muscle. The relative contributions of these various factors to the control of cell volume in resting and exercising skeletal muscle are thus described.  相似文献   

4.
A simple model of plant cell volume changes is presented. It is based on Kedem-Katchalsky equations for water and solute transport and on linear approximation of the dependence of intracellular hydrostatic pressure on the cell volume. Active transport of solute is also included. The time hierarchy within the system is analyzed by appropriate normalization of variables and by the assessment of the numerical values of model coefficients. The dynamics of the system comprises a slow process of solute exchange and a fast process of water transport. This explains the wellknown biphasic response of the cell volume to a sudden change in external conditions. An approximation of equations describing the system behaviour on the basis of the Tikhonov's theorem is proposed. The approximative solution is compared with the exact numerical solution of the original equations. The approximation is very good under physiological conditions, but it ceases to hold when the solute permeability of the cell membrane increases causing the breakdown of the entire time hierarchy within the system.  相似文献   

5.
Summary A model based on the canal theory (Katou andFurumoto 1986 a, b) is proposed for the absorption of solute and water at the root periphery. The present canal model in the periphery and the model which was previously proposed for the exudation in the stele (Katou et al. 1987), are organized into a model for radial transport across excised plant roots, in the light of anatomical and physiological knowledge of maize roots. The canal equations for both canals are numerically solved to give quite a good explanation for the observed exudation of maize roots. It is found that the regulation of solute transport has a primary importance in the regulation of water transport across excised roots. The internal cell pressure of the symplast adjusts the water absorption at the root periphery to the water secretion into the vessels. There seems no need for this explanation of the radial water transport across roots to assume cell membranes with low reflection coefficient or variable water permeability. It would seem that the apoplast wall layers play a crucial role in metabolic control of water transport in roots as well as in hypocotyls.Abbreviations J s ex* the theoretically estimated rate of solute exudation per unit surface area of model maize roots - J that of volume exudation per unit surface area of model maize roots - the reflection coefficient of the cell membrane against solutes  相似文献   

6.
Summary Epithelial cell volume is a sensitive indicator of the balance between solute entry into the cell and solute exit. Solute accumulation in the cell leads to cell swelling because the water permeability of the cell membranes is high. Similarly, solute depletion leads to cell shrinkage. The rate of volume change under a variety of experimental conditions may be utilized to study the rate and direction of solute transport by an epithelial cell. The pathways of water movement across an epithelium may also be deduced from the changes in cellular volume. A technique for the measurement of the volume of living epithelial cells is described, and a number of experiments are discussed in which cell volume determination provided significant new information about the dynamic behavior of epithelia. The mechanism of volume regulation of epithelial cells exposed to anisotonic bathing solution is discussed and shown to involve the transient stimulation of normally dormant ion exchangers in the cell membrane.  相似文献   

7.
Solute transport within articular cartilage is of central importance to tissue physiology, and may mediate effects of mechanical compression on cell metabolism. We therefore developed and applied a freeze-substitution method for fixation of cartilage explant disks which had been compressed axially during radial solute desorption. Dextrans were used as model solutes. Explant morphology was well preserved and nonequilibrium solute concentration distributions were stable for several hours at room temperature. For desorption from explants compressed statically to 0-46% strain, analysis of laser confocal images and comparison to a theoretical model permitted measurement of effective diffusivities. Results were consistent with previous studies suggesting a role for transport limitations in mediating the decreases of chondrocyte metabolic rates associated with static compression. In explants compressed dynamically (23+/-5% strain at 0.001 Hz), evidence was obtained for the augmentation of effective transport rate of 3 kDa dextrans by oscillatory interstitial fluid flows. This suggests that augmented solute transport may play a role in mediating the increases of chondrocyte metabolic rates associated with dynamic compression. Methods appear suitable for quantitative studies of transport within mechanically compressed cartilage-like tissues, and may be valuable for identification of loading environments which optimize solute transport in tissue engineering applications.  相似文献   

8.
Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.  相似文献   

9.
The dynamics of a bioreactor with a variable volume and an active solute flux based on the thermodynamics of irreversible processes and stability analysis was studied. The active solute flux may control both the bioreactor volume and the hydrostatic pressure as well as the concentration of the solute inside the cell in the steady state. The range of the active solute flux is limited by amplitudes (j1(0), J2(0] of the active transport depending on the membrane transport parameters. The dynamic system is stable for j0 greater than jth0.  相似文献   

10.
Methanosarcina mazei is a nonhalophilic methanogen that can adapt to 800 mM NaCl. Microarray studies have been used to examine the effect of elevated salinities on the regulation of gene expression in M. mazei. Eighty-four genes of different functional categories, such as solute transport and biosynthesis, Na(+) export, stress response, ion, protein and phosphate transport, metabolic enzymes, regulatory proteins, DNA-modification systems, and cell-surface modulators, were found to be stronger expressed at high salinities. Moreover, 10 genes encoding different metabolic functions including potassium uptake and ATP synthesis were reduced in expression under high salt. The overall expression profiles suggest that M. mazei is able to adapt to high salinities by multiple upregulation of many different cellular functions including protective pathways such as solute transport and biosynthesis, import of phosphate, export of Na(+), and upregulation of pathways for modification of DNA and cell surface architecture.  相似文献   

11.
Non-equilibrium thermodynamic model equations for non-ionic and heterogeneous n-component solution transport in a m-membrane system are presented. This model is based on two equations. The first one describes the volume transport of the solution and the second the transport of the solute. Definitions of the hydraulic permeability, reflection and diffusive permeability coefficients of the m-membrane system and relations between the coefficients of the m-membrane system and the respective membranes of the system are also given. The validity of this model for binary and ternary solutions was verified, using a double-membrane cell with a horizontally mounted membrane. In the cell, volume and solute fluxes were measured as a function of concentration and gravitational configuration.  相似文献   

12.
Transporters and their roles in LAB cell physiology   总被引:3,自引:0,他引:3  
  相似文献   

13.
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.  相似文献   

14.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

15.
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations.  相似文献   

16.
Transformation of plant cells with T-DNA of virulent agrobacteria is one of the most extreme triggers of developmental changes in higher plants. For rapid growth and development of resulting tumors, specific changes in the gene expression profile and metabolic adaptations are required. Increased transport and metabolic fluxes are critical preconditions for growth and tumor development. A functional genomics approach, using the Affymetrix whole genome microarray (approximately 22,800 genes), was applied to measure changes in gene expression. The solute pattern of Arabidopsis thaliana tumors and uninfected plant tissues was compared with the respective gene expression profile. Increased levels of anions, sugars, and amino acids were correlated with changes in the gene expression of specific enzymes and solute transporters. The expression profile of genes pivotal for energy metabolism, such as those involved in photosynthesis, mitochondrial electron transport, and fermentation, suggested that tumors produce C and N compounds heterotrophically and gain energy mainly anaerobically. Thus, understanding of gene-to-metabolite networks in plant tumors promotes the identification of mechanisms that control tumor development.  相似文献   

17.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
The relationship between local and global transport parameters is derived for an epithelial membrane having series-parallel topology and an asymmetric transport mechanism at its apical and/or basolateral cell membranes. The result shows that the difference in the local forward and backward solute permeability coefficients is manifest in the global volume flow equation as distinct forward and backward reflection coefficients. The analytical result is applicable to the first order (low concentration) domain of Michaelis-Menten kinetics and a procedure is given for simulating the remainder of the domain on SPICE2.  相似文献   

19.
On the basis of the currently accepted model for the cell membrane structure, a physico-chemical model for mediated transport is developed and solved for the case of polar non-electrolyte migration through the cell membrane. The model considers the interstitial space defined by the transport protein subunits to be the migration pathway for polar solutes. A Langmuir-type adsorption equilibrium is assumed at the interfaces and a multicomponent diffusion mechanism of solute and water is postulated within the migration pathway, where the polar residues of the transport protein represent another component of the system. Membrane selectivity is governed by the adsorption constants, which are shown to affect strongly the kinetics of transport. Isosmotic transport and the volume change of the cell are important features incorporated in the model, which is shown to fulfill the peculiar properties of facilitated diffusion systems. It is concluded that the same type of pathway can be used for the transport of other polar solutes through existing or induced hydrophilic channels, for which a similar approach is suggested.  相似文献   

20.
The work herein represents a novel approach for the modeling of low-density lipoprotein (LDL) transport from the artery lumen into the arterial wall, taking into account the effects of local wall shear stress (WSS) on the endothelial cell layer and its pathways of volume and solute flux. We have simulated LDL transport in an axisymmetric representation of a stenosed coronary artery, where the endothelium is represented by a three-pore model that takes into account the contributions of the vesicular pathway, normal junctions, and leaky junctions also employing the local WSS to yield the overall volume and solute flux. The fraction of leaky junctions is calculated as a function of the local WSS based on published experimental data and is used in conjunction with the pore theory to determine the transport properties of this pathway. We have found elevated levels of solute flux at low shear stress regions because of the presence of a larger number of leaky junctions compared with high shear stress regions. Accordingly, we were able to observe high LDL concentrations in the arterial wall in these low shear stress regions despite increased filtration velocity, indicating that the increase in filtration velocity is not sufficient for the convective removal of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号