首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Chiba  H Yamaza    I Shimokawa 《Current Genomics》2007,8(7):423-428
Insulin/insulin-like growth factor-I (IGF-I) pathways are recognized as critical signaling pathways involved in the control of lifespans in lower organisms to mammals. Caloric restriction (CR) reduces plasma concentration of insulin, growth hormone (GH), and IGF-I. CR retards various age-dependent disorders such as nuerodegenerative diseases and extends lifespan in laboratory rodents. These beneficial effects of CR are partly mimicked in spontaneous or genetically engineered rodent models of reduced insulin and GH/IGF-I axis. Most of these long-living rodents show increased insulin sensitivity; however, recent study has revealed that some other rodents show normal or reduced insulin sensitivity. Thus, increased insulin sensitivity might be not prerequisite for lifespan extension in insulin/GH/IGF-I altered longevity rodent models. These results highlighted that, for lifespan extension, the intracellular signaling molecules of insulin/GH/IGF-I pathways might be more important than actual peripheral or systemic insulin action.  相似文献   

2.
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell's responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist's point of view.  相似文献   

3.
Inactivation of insulin-like growth factor I (IGF-I) signalling pathways have been shown to extend lifespans in various lower species, including the nematode Caenorhabditis elegans. In order to investigate this relationship in a mammalian species, a series of experiments were carried out with a mouse model heterozygous for a mutation in the IGF-I receptor gene. These heterozygous mice only had slight post-natal growth retardation, but had a lifespan 26% longer than normal. Their fertility and dietary intake were unaffected. The mechanism for increased lifespan in these mutant mice appears to be enhanced resistance to oxidative stress: heterozygous mice had a greater survival rate subsequent to severe oxidative stress generated in vivo than wild-type mice, and cells from heterozygous animals had a better resistance to hydrogen peroxide in vitro than cells from wild-type animals. Resistance to oxidative stress in these mutant animals could be caused by decreased phosphorylation of molecules downstream of the IGF-I receptor in the IGF-I signalling pathway, one of which is thought to be p66shc. Whether this link between reduced IGF-I signalling and longevity is conserved in other mammalian species, including humans, is presently not known. If it was, it could have implications for growth hormone therapy, which increases serum IGF-I levels.  相似文献   

4.
Studies to find genes that affect maximum lifespan aim at identifying important determinants of ageing that may be universal across species. Model organisms show insulin signalling can play an important role in ageing. In view of insulin resistance, such loci can also be important in human ageing and health. The study of long-lived humans and their children points to the relevance of lipoprotein profiles and particle size for longevity. If ageing pathways are conserved, then the genes mediating such pathways may also be conserved. Cross-species sequence comparisons of potential longevity loci may reveal whether the pathways that they represent are central themes in lifespan regulation. Using bioinformatic tools, we performed a sequence comparison of the genes involved in lipid metabolism identified in humans as potential longevity loci. This analysis revealed that lipid storage and transport may be a common theme related to longevity in humans, honeybees and nematodes. Here, the vitellogenin family emerges as a potential key connection between lipid metabolism and the insulin/IGF-1 signalling pathway.  相似文献   

5.
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.  相似文献   

6.
In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.  相似文献   

7.
The effects of circulating insulin-like growth factor (IGF)-I on increasing insulin sensitivity are well recognized. IGF-I may have a further important role in maintaining beta-cell mass, and lower IGF-I activity could explain links between small size at birth and risk of type 2 diabetes in short, obese adults. In the representative Avon Longitudinal Study of Pregnancy and Childhood birth cohort, whereas insulin sensitivity is related to early postnatal weight gain, insulin secretion is related to IGF-I level and statural growth. Adult studies suggest that lower IGF-I levels at baseline predict increased risk for developing impaired glucose tolerance and type 2 diabetes. A common genetic polymorphism in the IGF1 gene could influence size at birth, postnatal growth and type 2 diabetes risk, but results of studies have been inconsistent. Extrapolation of these data to short children born small for gestational age is complex. Some have evidence of IGF-I and insulin resistance, suggesting inherent defects in IGF-I signalling. These children have poor growth responses to growth hormone (GH) therapy and perhaps the highest type 2 diabetes risk. Where these metabolic abnormalities are less severe, responses to GH therapy are good and diabetes risk may then depend on other genetic factors, indicated by a family history of diabetes or origin from ethnic groups with high diabetes prevalence.  相似文献   

8.
Traditionally, ageing has been considered a passive and entropic process, in which damages accumulate on biological macromolecules over time and the accumulated damages lead to a decline in overall physiological functions. However, the discovery of a longevity mutant in the nematode Caenorhabditis elegans has challenged this view. A longevity mutant is a mutant organism, in which a reduction-of-function of a certain gene prolongs the lifespan. Thus, the discovery of longevity mutants has shown the existence of genes, which function to shorten lifespan in wild-type organisms, promoting extensive hunting for longevity-regulating genes in short-lived model organisms, such as yeast, worms and flies. These studies have revealed remarkable conservation of longevity-regulating genes and their networks among species. Decreased insulin/IGF-like signalling and decreased target of rapamycin (TOR) signalling are both shown to extend lifespan in evolutionarily divergent species, from unicellular organisms to mammals. Intriguingly, most of these longevity-regulating pathways reveal pro-longevity and anti-longevity effects on lifespan, depending on biological and environmental contexts. This review summarizes pleiotropic functions of the conserved longevity-regulating genes or pathways, focusing on studies in C. elegans.  相似文献   

9.
Low birth weight has been associated with an increased incidence of ischaemic heart disease (IHD) and type 2 diabetes. Endocrine regulation of fetal growth by growth hormone (GH) and insulin-like growth factor (IGF)-I is complex. Placental GH is detectable in maternal serum from the 8th to the 12th gestational week, and rises gradually during pregnancy where it replaces pituitary GH in the maternal circulation. The rise in placental GH may explain the pregnancy-induced rise in maternal serum IGF-I levels. In the fetal compartment, IGF-I levels increase significantly in normally growing fetuses from 18 to 40 weeks of gestation, but IGF-I levels are four to five times lower than those in the maternal circulation. Thus IGF-I levels in fetal as well as in maternal circulation are thought to regulate fetal growth. Circulating levels of IGF-I are thought to be genetically controlled and several IGF-I gene polymorphisms have been described. IGF-I gene polymorphisms are associated with birth weight in some studies but not in all. Likewise, IGF-I gene polymorphisms are associated with serum IGF-I in healthy adults in some studies, although some controversy exists. Serum IGF-I decreases with increasing age in healthy adults, and this decline could hypothetically be responsible for the increased risk of IHD with ageing. A recent nested case-control study found that adults without IHD, but with low circulating IGF-I levels and high IGF binding protein-3 levels, had a significantly increased risk of developing IHD during a 15-year follow-up period. In summary, the GH/IGF-I axis is involved in the regulation of fetal growth. Furthermore, it has been suggested that low IGF-I may increase the risk of IHD in otherwise healthy subjects. Hypothetically, intrauterine programming of the GH/IGF axis may influence postnatal growth, insulin resistance and consequently the risk of cardiovascular disease. Thus IGF-I may serve as a link between fetal growth and adult-onset disease.  相似文献   

10.
Although the underlying mechanisms of longevity are not fully understood, it is known that mutation in genes that share similarities with those in humans involved in the insulin/insulin-like growth factor I (IGF-I) signal response pathway can significantly extend life span in diverse species, including yeast, worms, fruit flies, and rodents. Intriguingly, the long-lived mutants, ranging from yeast to mice, share some important phenotypic characteristics, including reduced insulin signaling, enhanced sensitivity to insulin, and reduced IGF-I plasma levels. Such genetic homologies and phenotypic similarities between insulin/IGF-I pathway mutants raise the possibility that the fundamental mechanism of aging may be evolutionarily conserved from yeast to mammals. Very recent findings also provide novel and intriguing evidence for the involvement of insulin and IGF-I in the control of aging and longevity in humans. In this study, we focus on how the insulin/IGF-I pathway controls yeast, nematode, fruit fly, and rodent life spans and how it is related to the aging process in humans to outline the prospect of a unifying mechanism in the genetics of longevity.  相似文献   

11.
12.
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio‐economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin‐like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS‐1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.  相似文献   

13.
There is evidence, both in vitro and in vivo, that receptor tyrosine kinases play a key role in the formation and progression of human cancer. In particular, the insulin-like growth factor receptor (IGF-IR), a tyrosine kinase receptor for IGF-I and IGF-II, has been well documented in cell culture, animal studies, and humans to play a role in malignant transformation, progression, protection from apoptosis, and metastasis. In addition, the hormone insulin (which is very closely related to the IGFs) and its tyrosine kinase receptor (the IR, which is very closely related to the IGR-IR) have been documented both in vitro and in vivo to play a key role in cancer biology. Indeed, several epidemiological studies have shown that insulin resistance status, characterized by hyperinsulinaemia, is associated with an increased risk for a number of malignancies, including carcinomas of the breast, prostate, colon and kidney. Recent data have elucidated some molecular mechanisms by which IR is involved in cancer. IR is over-expressed in several human malignancies. Interestingly, one of the two IR isoform (IR-A) is especially over-expressed in cancer. IR-A is the IR foetal isoform and has the peculiar characteristic to bind not only insulin but also IGF-II. In addition, the IR contributes to formation of hybrid receptors with the IGF-IR (HR). By binding to hybrid receptors, insulin may stimulate specific IGF-IR signalling pathways. Over-expression of IR-A is, therefore, a major mechanism of IGF system over-activation in cancer. In this respect, IR-A isoform and hybrid receptors should be regarded as potential molecular targets, in addition to IGF-IR, for novel anti-cancer therapy. These findings may have important implications for both the prevention and treatment of common human malignancies. They underline the concept that hyperinsulinaemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmacological approaches to avoid an increased risk for cancer. Moreover, native insulin and insulin analogue administration should be carefully evaluated in terms of the possible increase in cancer risk.  相似文献   

14.
The quality control of protein homoeostasis deteriorates with aging, causing the accumulation of misfolded proteins and neurodegeneration. Thus, in AD (Alzheimer's disease), soluble oligomers, protofibrils and fibrils of the Aβ (amyloid β-peptide) and tau protein accumulate in specific brain regions. This is associated with the progressive destruction of synaptic circuits controlling memory and higher mental function. The primary signalling mechanisms that (i) become defective in AD to alter the normal proteostasis of Aβ and tau, and (ii) initiate a pathophysiological response to cause cognitive decline, are unclear. The IIS [insulin/IGF-1 (insulin-like growth factor 1)-like signalling] pathway is mechanistically linked to longevity, protein homoeostasis, learning and memory, and is emerging to be central to both (i) and (ii). This pathway is aberrantly overactivated in AD brain at the level of increased activation of the serine/threonine kinase Akt and the phosphorylation of its downstream targets, including mTOR (mammalian target of rapamycin). Feedback inhibition of normal insulin/IGF activation of the pathway also occurs in AD due to inactivation of IRS-1 (insulin receptor substrate 1) and decreased IRS-1/2 levels. Pathogenic forms of Aβ may induce aberrant sustained activation of the PI3K (phosphoinositide 3-kinase)/Akt signal in AD, also causing non-responsive insulin and IGF-1 receptor, and altered tau phosphorylation, conformation and function. Reducing IIS activity in animal models by decreasing IGF-1R levels or inhibiting mTOR activity alters Aβ and tau protein homoeostasis towards less toxic protein conformations, improves cognitive function and extends healthy lifespan. Thus normalizing IIS dysfunction may be therapeutically relevant in abrogating Aβ and tau proteotoxicity, synaptic dysfunction and cognitive decline in AD.  相似文献   

15.
16.
Gami MS  Wolkow CA 《Aging cell》2006,5(1):31-37
Much excitement has arisen from the observation that decrements in insulin‐like signaling can dramatically extend lifespan in the nematode, Caenorhabditis elegans, and fruitfly, Drosophila melanogaster. In addition, there are tantalizing hints that the IGF‐I pathway in mice may have similar effects. In addition to dramatic effects on lifespan, invertebrate insulin‐like signaling also promotes changes in stress resistance, metabolism and development. Which, if any, of the various phenotypes of insulin pathway mutants are relevant to longevity? What are the genes that function in collaboration with insulin to prolong lifespan? These questions are at the heart of current research in C. elegans longevity. Two main theories exist as to the mechanism behind insulin's effects on invertebrate longevity. One theory is that insulin programs metabolic parameters that prolong or reduce lifespan. The other theory is that insulin determines the cell's ability to endure oxidative stress from respiration, thereby determining the rate of aging. However, these mechanisms are not mutually exclusive and several studies seem to support a role for both. Here, we review recently published reports investigating the mechanisms behind insulin's dramatic effect on longevity. We also spotlight several C. elegans genes that are now known to interact with insulin signaling to determine lifespan. These insights into pathways affecting invertebrate lifespan may provide a basis for developing strategies for pharmacological manipulation of human lifespan.  相似文献   

17.
Reduced insulin/IGF signaling (IIS) extends lifespan in multiple organisms. Different processes in different tissues mediate this lifespan extension, with a set of interplays that remain unclear. We here show that, in Drosophila, reduced IIS activity modulates methionine metabolism, through tissue‐specific regulation of glycine N‐methyltransferase (Gnmt), and that this regulation is required for full IIS‐mediated longevity. Furthermore, fat body‐specific expression of Gnmt was sufficient to extend lifespan. Targeted metabolomics showed that reducing IIS activity led to a Gnmt‐dependent increase in spermidine levels. We also show that both spermidine treatment and reduced IIS activity are sufficient to extend the lifespan of Drosophila, but only in the presence of Gnmt. This extension of lifespan was associated with increased levels of autophagy. Finally, we found that increased expression of Gnmt occurs in the liver of liver‐specific IRS1 KO mice and is thus an evolutionarily conserved response to reduced IIS. The discovery of Gnmt and spermidine as tissue‐specific modulators of IIS‐mediated longevity may aid in developing future therapeutic treatments to ameliorate aging and prevent disease.  相似文献   

18.
Inhibiting insulin/IGF-1 signalling extends lifespan and delays age-related disease in species throughout the animal kingdom. This life-extension pathway, the first to be defined, was discovered through genetic studies in the small roundworm Caenorhabditis elegans. This discovery is described here.  相似文献   

19.
The Sgs1 protein from Saccharomyces cerevisiae is a member of the RecQ helicases. Defects in RecQ helicases result in premature aging phenotypes in both yeasts and humans, which appear to be promoted by replicative stress. Yeast rad27 mutants also suffer from premature aging. As the human Rad27p and Sgs1p homologs interact, a similar interaction between the yeast proteins could be important for promoting longevity in S. cerevisiae. We tested the contribution of a potential interaction between Rad27p and Sgs1p to longevity by analyzing lifespan and parameters associated with longevity in rad27 and sgs1 mutants. The carbon source supporting growth also modulated longevity as evaluated by replicative and chronological lifespan measurements. Growth on glycerol promoted chronological lifespan, while maximum replicative lifespan was obtained with glucose-supported growth. In comparison to the individual mutants, the sgs1 rad27 double mutant displayed a shortened replicative lifespan and was also more sensitive to DNA-damaging agents. In addition to promoting replicative lifespan, the activity of Rad27p was critical for achieving full chronological lifespan. The rad27 mutants exhibited increased oxidative stress levels along with an elevated spontaneous mutation rate. Removal of Sgs1p activity additionally increased the oxidative stress and spontaneous mutation rate in rad27 mutants without affecting the chronological lifespan.  相似文献   

20.
衰老是生物学中一个基本的、尚未解决的问题。过去十几年在无脊椎动物方面的研究表明,胰岛素/胰岛素样生长因子信号通路发生改变可以增加寿命和延迟衰老。在酵母、线虫、果蝇和小鼠等方面的研究已经勾画出了这个神秘问题的大致轮廓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号