首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions.  相似文献   

2.
Classical (conventional) Müllerian mimicry theory predicts that two (or more) defended prey sharing the same signal always benefit each other despite the fact that one species can be more toxic than the other. The quasi‐Batesian (unconventional) mimicry theory, instead, predicts that the less defended partner of the mimetic relationship may act as a parasite of the signal, causing a fitness loss to the model. Here we clarify the conditions for parasitic or mutualistic relationships between aposematic prey, and build a model to examine the hypothesis that the availability of alternative prey is crucial to Müllerian and quasi‐Batesian mimicry. Our model is based on optimal behaviour of the predator. We ask if and when it is in the interest of the predator to learn to avoid certain species as prey when there is alternative (cryptic) prey available. Our model clearly shows that the role of alternative prey must be taken into consideration when studying model–mimic dynamics. When food is scarce it pays for the predator to test the models and mimics, whereas if food is abundant predators should leave the mimics and models untouched even if the mimics are quite edible. Dynamics of the mimicry tend to be classically Müllerian if mimics are well defended, while quasi‐Batesian dynamics are more likely when they are relatively edible. However, there is significant overlap: in extreme cases mimics can be harmful to models (a quasi‐Batesian case) even if the species are equally toxic. A crucial parameter explaining this overlap is the search efficiency with which indiscriminating vs. discriminating predators find cryptic prey. Quasi‐Batesian mimicry becomes much more likely if discrimination increases the efficiency with which the specialized predator finds cryptic prey, while the opposite case tends to predict Müllerian mimicry. Our model shows that both mutualistic and parasitic relationship between model and mimic are possible and the availability of alternative prey can easily alter this relationship.  相似文献   

3.
The evolution of mimicry, and particularly the persistence of undefended Batesian mimetic forms that are imperfect copies of their defended models, remains a central question in evolutionary biology. Previous work has demonstrated that variation in mimetic fidelity in artificial prey can alter survival. However, no studies have validated the assumption that detailed laboratory-based measurements of mimetic fidelity are actually reflected in survival in natural field experiments. Here, we demonstrate that, in line with previous studies, the mimetic similarity of 77 hover fly (Diptera: Syrphidae) species to the common wasp Vespula alascensis is strongly related to the number of abdominal stripes exhibited by the flies. We then produce three artificial pastry baits: (1) a “model” which is chemically defended and has two stripes, (2) a one-stripe mimic, and (3) an unstriped mimic. Based on the ratings study, we predicted that the one-stripe mimic would exhibit survival intermediate between the unstriped mimic and the model. Baits were deployed in experiments each involving 81 baits (27 of each kind), at 3 sites, with experiments replicated 10 times at each site for a total deployment of 2,430 baits. Proportional hazards models show that both one-striped and model baits survived equally well and significantly better than the unstriped baits, suggesting categorical prey identification rather than the use of stripe number as a continuous trait, as was suggested by the laboratory study. These findings suggest that, while humans and avian predators can distinguish mimics from models in the laboratory using a range of traits, behaviour in the field may not reflect this ability. This absence of a link between continuous measures of mimetic fidelity and prey selection may contribute to the maintenance of imperfect mimicry, but more studies using near-natural experimental paradigms are needed to investigate the phenomenon further.  相似文献   

4.
Contemporary theory predicts that the degree of mimetic similarity of mimics towards their model should increase as the mimic/model ratio increases. Thus, when the mimic/model ratio is high, then the mimic has to resemble the model very closely to still gain protection from the signal receiver. To date, empirical evidence of this effect is limited to a single example where mimicry occurs between species. Here, for the first time, we test whether mimetic fidelity varies with mimic/model ratios in an intraspecific mimicry system, in which signal receivers are the same species as the mimics and models. To this end, we studied a polymorphic damselfly with a single male phenotype and two female morphs, in which one morph resembles the male phenotype while the other does not. Phenotypic similarity of males to both female morphs was quantified using morphometric data for multiple populations with varying mimic/model ratios repeated over a 3 year period. Our results demonstrate that male-like females were overall closer in size to males than the other female morph. Furthermore, the extent of morphological similarity between male-like females and males, measured as Mahalanobis distances, was frequency-dependent in the direction predicted. Hence, this study provides direct quantitative support for the prediction that the mimetic similarity of mimics to their models increases as the mimic/model ratio increases. We suggest that the phenomenon may be widespread in a range of mimicry systems.  相似文献   

5.
Batesian mimics gain protection from predation through the evolution of physical similarities to a model species that possesses anti-predator defences. This protection should not be effective in the absence of the model since the predator does not identify the mimic as potentially dangerous and both the model and the mimic are highly conspicuous. Thus, Batesian mimics should probably encounter strong predation pressure outside the geographical range of the model species. There are several documented examples of Batesian mimics occurring in locations without their models, but the evolutionary responses remain largely unidentified. A mimetic species has four alternative evolutionary responses to the loss of model presence. If predation is weak, it could maintain its mimetic signal. If predation is intense, it is widely presumed the mimic will go extinct. However, the mimic could also evolve a new colour pattern to mimic another model species or it could revert back to its ancestral, less conspicuous phenotype. We used molecular phylogenetic approaches to reconstruct and test the evolution of mimicry in the North American admiral butterflies (Limenitis: Nymphalidae). We confirmed that the more cryptic white-banded form is the ancestral phenotype of North American admiral butterflies. However, one species, Limenitis arthemis, evolved the black pipevine swallowtail mimetic form but later reverted to the white-banded more cryptic ancestral form. This character reversion is strongly correlated with the geographical absence of the model species and its host plant, but not the host plant distribution of L. arthemis. Our results support the prediction that a Batesian mimic does not persist in locations without its model, but it does not go extinct either. The mimic can revert back to its ancestral, less conspicuous form and persist.  相似文献   

6.
Müllerian mimicry, in which both partners are unpalatable to predators, is often used as an example of a coevolved mutualism. However, it is theoretically possible that some Müllerian mimics are parasitic if a weakly defended mimic benefits at the expense of a more highly defended model, a phenomenon known as ‘quasi-Batesian mimicry’. The theory expounded by Müller and extended here for unequal unpalatability, on the other hand, suggests that quasi-Batesian mimicry should be rare in comparison with classical, or mutualistic Müllerian mimicry. Evolutionarily, quasi-Batesian mimicry has consequences similar to classical Batesian mimicry, including unilateral ‘advergence’ of the mimic to the model, and diversifying frequency-dependent selection on the mimic which may lead to mimetic polymorphism. In this paper, theory and empirical evidence for mutual benefit and coevolution in Müllerian mimicry are reviewed. I use examples from well-known insect Müllerian mimicry complexes: the Limenitis–Danaus (Nymphalidae) system in North America, the Bombus–Psithyrus (Apidae) system in the north temperate zone, and the Heliconius–Laparus (Nymphalidae) system in tropical America. These give abundant evidence for unilateral advergence, and no convincing evidence, to my knowledge, for coevolved mutual convergence. Furthermore, mimetic polymorphisms are not uncommon. Yet classical mutualistic Müllerian mimicry, coupled with spatial (and possibly temporal) variation in model abundances convincingly explain these apparent anomalies without recourse to a quasi-Batesian explanation. Nevertheless, the case against classical Müllerian mimicry is not totally disproved, and should be investigated further. I hope that this tentative analysis of actual mimicry rings may encourage others to look for evidence of coevolution and quasi-Batesian effects in a variety of other Müllerian mimicry systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Batesian mimics are predicted to lose their fitness advantage not only in the absence of an unpalatable model, but also when the mimic becomes relatively abundant. The phenotypic hybrid zone between mimetic and nonmimetic admiral butterflies, comprising the polytypic Limenitis arthemis species complex, offers an ideal opportunity to test these predictions because the position of the hybrid zone is hypothesized to be controlled by the geographic range of Battus philenor , the chemically defended model. We used 29 years of observational field data from a continental-scale butterfly monitoring program, the 4th of July Butterfly Counts, to show that (1) the advantage of mimicry does not extend beyond the range of the model, (2) in contrast to expectations, the mimicry complex is maintained even where the model is rare and (3) the sharp phenotypic transition between mimetic and nonmimetic admiral populations occurs over a very narrow spatial scale corresponding to the limit of the model's range. These results suggest that, even at very low densities, there is selection for Batesian mimicry and it maintains the geographic position of this hybrid zone. Our findings highlight the value of large-scale, long-term citizen science monitoring programs for answering basic ecological and evolutionary questions.  相似文献   

8.
Batesian mimicry is a well‐studied adaptation for predation avoidance, in which a mimetic species resembles an unpalatable model species. Batesian mimicry can be under positive selection because of the protection gained against predators, due to resemblance to unpalatable model species. However, in some mimetic species, nonmimetic individuals are present in populations, despite the benefits of mimicry. The mechanism for evolution of such mimetic polymorphism remains an open question. Here, we address the hypothesis that the abundance of mimics is limited by that of the models, leading to mimetic polymorphism. In addition, other forces such as the effects of common ancestry and/or isolation by distance may explain this phenomenon. To investigate this question, we focused on the butterfly, Papilio polytes, that exhibits mimetic polymorphism on multiple islands of the Ryukyus, Japan, and performed field surveys and genetic analysis. We found that the mimic ratio of P. polytes was strongly correlated with the model abundance observed on each of the five islands, suggesting negative frequency‐dependent selection is driving the evolution of polymorphism in P. polytes populations. Molecular phylogenetic analysis indicated that the southern island populations are the major source of genetic diversity, and the middle and northern island populations arose by relatively recent migration. This view was also supported by mismatch distribution and Tajima's D analyses, suggesting a recent population expansion on the middle and northern islands, and stable population persistence on the southern islands. The frequency of the mimetic forms within P. polytes populations is thus explained by variations in the model abundance rather than by population structure. Thus, we propose that predation pressure, rather than neutral forces, have shaped the Batesian mimicry polymorphism in P. polytes observed in the Ryukyus.  相似文献   

9.
Batesian mimicry is the resemblance between unpalatable models and palatable mimics. The widely accepted idea is that the frequency and the unprofitability of the model are crucial for the introduction of a Batesian mimic into the prey population. However, experimental evidence is limited and furthermore, previous studies have considered mainly perfect mimicry (automimicry). We investigated imperfect Batesian mimicry by varying the frequency of an aposematic model at two levels of distastefulness. The predator encountered prey in a random order, one prey item at a time. The prey were thus presented realistically in a sequential way. Great tits (Parus major) were used as predators. This experiment, with a novel signal, supports the idea that Batesian mimics gain most when the models outnumber them. The mortalities of the mimics as well as the models were significantly dependent on the frequency of the model. Both prey types survived better the fewer mimics there were confusing the predator. There were also indications that the degree of distastefulness of the model had an effect on the survival of the Batesian mimic: the models survived significantly better the more distasteful they were. The experiment supports the most classical predictions in the theories of the origin and maintenance of Batesian mimicry.  相似文献   

10.
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in ‘deep sympatry’), rare (i.e. at the sympatry/allopatry boundary or ‘edge sympatry’) and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision – within and among different mimics – offers novel insights into the causes and consequences of mimicry.  相似文献   

11.
Batesian mimicry is seen as an example of evolution by natural selection, with predation as the main driving force. The mimic is under selective pressure to resemble its model, whereas it is disadvantageous for the model to be associated with the palatable mimic. In consequence one might expect there to be an evolutionary arms race, similar to the one involving host-parasite coevolution. In this study, the evolutionary dynamics of a Batesian mimicry system of model ants and ant-mimicking salticids is investigated by comparing the phylogenies of the two groups. Although Batesian mimics are expected to coevolve with their models, we found the phylogenetic patterns of the models and the mimics to be indicative of adaptive radiation by the mimic rather than co-speciation between the mimic and the model. This shows that there is strong selection pressure on Myrmarachne, leading to a high degree of polymorphism. There is also evidence of sympatric speciation in Myrmarachne, the reproductive isolation possibly driven by female mate choice in polymorphic species.  相似文献   

12.
In aggressive mimicry, a 'predatory' species resembles a model that is harmless or beneficial to a third species, the 'dupe'. We tested critical predictions of Batesian mimicry models, i.e. that benefits of mimicry to mimics and costs of mimicry to models should be experienced only when model and mimic co-occur, in an aggressive mimicry system involving juvenile bluestreaked cleaner wrasse (Labroides dimidiatus) as models and bluestriped fangblennies (Plagiotremus rhinorhynchos) as mimics. Cleanerfish mimics encountered nearly twice as many potential victims and had higher striking rates when in proximity to than when away from the model. Conversely, in the presence of mimics, juvenile cleaner wrasses were visited by fewer clients and spent significantly less time foraging. The benefits to mimic and costs to model thus depend on a close spatial association between model and mimic. Batesian mimicry theory may therefore provide a useful initial framework to understand aggressive mimicry.  相似文献   

13.
Strong positive density-dependence should lead to a loss of diversity, but warning-colour and Müllerian mimicry systems show extraordinary levels of diversity. Here, we propose an analytical model to explore the dynamics of two forms of a Müllerian mimic in a heterogeneous environment with two alternative model species. Two connected populations of a dimorphic, chemically defended mimic are allowed to evolve and disperse. The proportions of the respective model species vary spatially. We use a nonlinear approximation of Müller's number-dependent equations to model a situation where the mortality for either form of the mimic decreases hyberbolically when its local density increases. A first non-spatial analysis confirms that the positive density-dependence makes coexistence of mimetic forms unstable in a single isolated patch, but shows that mimicry of the rarer model can be stable once established. The two-patch analysis shows that when models have different abundance in different places, local mimetic diversity in the mimic is maintained only if spatial heterogeneity is strong, or, more interestingly, if the mimic is not too strongly distasteful. Therefore, mildly toxic species can become polymorphic in a wider range of ecological settings. Spatial dynamics thus reveal a region of Müllerian polymorphism separating classical Batesian polymorphism and Müllerian monomorphism along the mimic's palatability spectrum. Such polymorphism-palatability relationship in a spatial environment provides a parsimonious hypothesis accounting for the observed Müllerian polymorphism that does not require quasi-Batesian dynamics. While the stability of coexistence depends on all factors, only the migration rate and strength of selection appear to affect the level of diversity at the polymorphic equilibrium. Local adaptation is predicted in most polymorphic cases. These results are in very good accordance with recent empirical findings on the polymorphic butterflies Heliconius numata and H. cydno.  相似文献   

14.
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model''s physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly.  相似文献   

15.
Bates hypothesized that some butterfly species that are palatable gain protection from predation by appearing similar to distasteful butterflies. When undisturbed, distasteful butterflies fly slowly and in a straight line, and palatable Batesian mimics also adopt this nonchalant behaviour. When seized by predators, distasteful butterflies are defended by toxic or nauseous chemicals. Lacking chemical defences, Batesian mimics depend on flight to escape attacks. Here, I demonstrate that flight in warning-coloured mimetic butterflies and their distasteful models is more costly than in closely related non-mimetic butterflies. The increased cost is the result of differences in both wing shape and kinematics. Batesian mimics and their models slow the angular velocity of their wings to enhance the colour signal but at an aerodynamic cost. Moreover, the design for flight in Batesian mimics has an additional energetic cost over that of its models. The added cost may cause Batesian mimics to be rare, explaining a general pattern that Bates first observed.  相似文献   

16.
Learning and memory in mimicry: II. Do we understand the mimicry spectrum?   总被引:4,自引:0,他引:4  
The evolution of mimicry is driven by the behaviour of predators. However, there has been little systematic testing of the sensitivity of evolutionary predictions to variations in assumptions about predator learning and forgetting. To test how robust mimicry theory is to such behavioural modifications we combined sets of rules describing ways in which learning and forgetting might operate in vertebrate predators into 29 computer predator behaviour systems. These systems were applied in simulations of simplified natural mimicry situations, particularly investigating the nature of density-dependence and the benefits and losses conferred by mimicry across a spectrum of payabilities. The classical Batesian-Muellerian spectrum was generated only by two of our 29 predator behaviour systems. Both of these ‘classical predators' had extreme asymptotes of learning and fixed rate, time dependent forgetting. All edible mimics were treated by them as Batesian in that they parasitized their model's protection and had positive monotonic effects of density on model-mimic attack rates. All defended mimics were treated as Muellerian (Mullerian) in that their presence benefited their Model's protection, and showed negative monotonic density effects on attack rates. With the remaining 27 systems Batesian or Muellerian relationships extended beyond their conventional edibility boundaries. In some cases, Muellerian mimicry extended into the edible region of the ‘palatability spectrum’ (we term this quasi-Muellerian mimicry), and in others Batesian mimicry extended into the ‘unpalatable’, defended half of the spectrum (quasi-Batesian mimicry). Although most of the 29 behaviour systems included at least some regions of true Batesian and Muellerian mimicries, if forgetting was triggered by avoidance events (as suggested by J.E. Huheey) rather than by the passage of time then the mimicry spectrum excluded Mullerian mimicry altogether, and was composed of Batesian and quasi-Batesian mimicries. In addition the classical prediction of monotonic density-dependent predation was shown not to be robust against variations in the forgetting algorithm. Time based forgetting which is retarded by observations of prey, or which varies its rate according to the degree of pleasantness or unpleasantness of a prey generates non-monotonic results. At low mimic densities there is a positive effect on attack rates and at higher densities a negative effect. Overall, the mode of forgetting has a more significant effect on mimetic relationships than the rate of learning. It seems to matter little whether learning and forgetting are switched or gradual functions. Predictions about mimetic evolution are therefore sensitive to assumptions about predator behaviour, though more so to variations in forgetting than learning rate. Based on findings from animal psychology and mimetic populations, we are able to rule out a number of predator behaviour systems. We suggest that the most credible of our 29 predators are those which generate results which incorporate Batesian, quasi-Batesian and Muellerian mimicries across the ‘palatability spectrum’.  相似文献   

17.
Batesian mimicry is a striking example of Darwinian evolution, in which a mimetic species resembles toxic or unpalatable model species, thereby receiving protection from predators. In some species exhibiting Batesian mimicry, nonmimetic individuals coexist as polymorphism in the same population despite the benefits of mimicry. In a previous study, we proposed that the abundance of mimics is limited by that of the models, leading to polymorphic Batesian mimicry in the swallowtail butterfly, Papilio polytes, on the Ryukyu Islands in Japan. We found that their mimic ratios (MRs), which varied among the Islands, were explained by the model abundance of each habitat, rather than isolation by distance or phylogenetic constraint based on the mitochondrial DNA (mtDNA) analysis. In the present study, this possibility was reexamined based on hundreds of nuclear single nucleotide polymorphisms (SNPs) of 93 P. polytes individuals from five Islands of the Ryukyus. We found that the population genetic and phylogenetic structures of P. polytes largely corresponded to the geographic arrangement of the habitat Islands, and the genetic distances among island populations show significant correlation with the geographic distances, which was not evident by the mtDNA‐based analysis. A partial Mantel test controlling for the present SNP‐based genetic distances revealed that the MRs of P. polytes were strongly correlated with the model abundance of each island, implying that negative frequency‐dependent selection interacting with model species shaped and maintained the mimetic polymorphism. Taken together, our results support the possibility that predation pressure, not isolation by distance or other neutral factors, is a major driving force of evolution of the Batesian mimicry in P. polytes from the Ryukyus.  相似文献   

18.
Conspicuousness, or having high contrast relative to the surrounding background, is a common feature of unpalatable species. Several hypotheses have been proposed to explain the occurrence of conspicuousness, and while most involve the role of conspicuousness as a direct signal of unpalatability to potential predators, one hypothesis suggests that exaggerated conspicuousness may evolve in unpalatable species to reduce predator confusion with palatable species (potential Batesian mimics). This hypothesis of antagonistic coevolution between palatable and unpalatable species hinges on the ‘cost of conspicuousness’, in which conspicuousness increases the likelihood of predation more in palatable species than in unpalatable species. Under this mimicry scenario, four patterns are expected: (i) mimics will more closely resemble local models than models from other localities, (ii) there will be a positive relationship between mimic and model conspicuousness, (iii) models will be more conspicuous in the presence of mimics, and (iv) when models and mimics differ in conspicuousness, mimics will be less conspicuous than models. We tested these predictions in the salamander mimicry system involving Notophthalmus viridescens (model) and one colour morph of Plethodon cinereus (mimic). All predictions were supported, indicating that selection for Batesian mimicry not only influences the evolution of mimics, but also the evolution of the models they resemble. These findings indicate that mimicry plays a large role in the evolution of model warning signals, particularly influencing the evolution of conspicuousness.  相似文献   

19.
The nature of signal mimicry between defended prey (known as Müllerian mimicry) is controversial. Some authors assert that it is always mutualistic and beneficial, whilst others speculate that less well defended prey may be parasitic and degrade the protection of their better defended co-mimics (quasi-Batesian mimicry). Using great tits (Parus major) as predators of artificial prey, we show that mimicry between unequally defended co-mimics is not mutualistic, and can be parasitic and quasi-Batesian. We presented a fixed abundance of a highly defended model and a moderately defended dimorphic (mimic and distinct non-mimetic) species, and varied the relative frequency of the two forms of the moderately defended prey. As the mimic form increased in abundance, per capita predation on the model-mimic pair increased. Furthermore, when mimics were rare they gained protection from predation but imposed no co-evolutionary pressure on models. We found that the feeding decisions of the birds were affected by their individual toxic burdens, consistent with the idea that predators make foraging decisions which trade-off toxicity and nutrition. This result suggests that many prey species that are currently assumed to be in a simple mutualistic mimetic relationship with their co-mimic species may actually be engaged in an antagonistic co-evolutionary process.  相似文献   

20.
The resemblance between palatable mimics and unpalatable models in Batesian mimicry systems is tempered by many factors, including the toxicity of the model species. Model toxicity is thought to influence both the occurrence of mimicry and the evolution of mimetic phenotypes, such that mimicry is most likely to persist when models are particularly toxic. Additionally, model toxicity may influence the evolution of mimetic phenotype by allowing inaccurate mimicry to evolve through a mechanism termed ‘relaxed selection’. We tested these hypotheses in a salamander mimicry system between the model Notophthalmus viridescens and the mimic Plethodon cinereus, in which N. viridescens toxicity takes the form of tetrodotoxin. Surprisingly, though we discovered geographic variation in model toxin level, we found no support for the hypotheses that model toxicity directly influences either the occurrence of mimicry or the evolution of mimic phenotype. Instead, a link between N. viridescens size and toxicity may indirectly lead to relaxed selection in this mimicry system. Additionally, limitations of predator perception or variation in the rate of phenotypic evolution of models and mimics may account for the evolution of imperfect mimicry in this salamander species. Finally, variation in predator communities among localities or modern changes in environmental conditions may contribute to the patchy occurrence of mimicry in P. cinereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号