首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

2.
Several studies performed in the last 15 years have shown that growth hormone (GH) induces a profound catch-up in height in short children born small for gestational age (SGA). We know from more recent studies that final height can be normalized through GH treatment. In Europe, GH is now a recognized indication, enabling treatment of short children born SGA. Treatment is given to the most severe growth-retarded children after the age of 4 years. A dose of 0.035 mg/kg per day is recommended. However, in our opinion a higher dose would be more efficient in very short children, especially if they are treated later in childhood.  相似文献   

3.
In the Dutch growth hormone (GH) registration database there are currently 552 GH-deficient children being treated, subcutaneously, with recombinant human GH six to seven times per week. Of those, 112 who have been treated for at least 2 years have reached final height. Mean age at start of therapy was 11.70 years. Mean GH dose was 15.5 IU/m(2) body surface per week. Mean final height was 173.2 cm (boys) and 159.7 cm (girls) and -1.36 SD of the population mean. Of the patients, 73.2% and 63.4%, respectively, reached a final height above -2 SD of the population or within target limits. FH-SDS was higher compared with the results of earlier cohorts with different treatment regimens. Target height, GH peak value at diagnosis, age at start of GH therapy, height SDS (HSDS) at start of puberty, and duration of GH therapy were significantly correlated with final height. These results, combined with those of a prospective GH dose-response study, suggest that better long-term results can be obtained with early and prolonged treatment and if the GH dose is individually adapted to the short-term growth response. In an ongoing dose-response study, 68 girls with Turner's syndrome, aged 2-11 years, were randomized into three dosage groups with a daily GH dose of: (group A) 4 IU/m(2) body surface; (group B) 4 IU/m(2) in the first year of therapy and 6 IU/m(2) thereafter; (group C) 4 IU/m(2) in the first year, 6 IU/m(2) in the second year, and 8 IU/m(2) thereafter. After 4 years of GH therapy, girls aged 12 years or older started low-dose oestrogen therapy. After 7 years of GH therapy, mean HSDS in all three groups had increased to values above the third percentile for healthy girls. Mean final height and final height gain of 25 girls was 159.1 and 12.5 cm, 161.8 and 14.6 cm, and 162.7 and 16.0 cm in groups A, B and C respectively. These long-term and final height results are more favourable than the results of earlier Dutch Turner's syndrome studies. Possible explanations are the higher GH doses and/or the younger age at start of GH therapy.  相似文献   

4.
ObjectiveTo review whether growth hormone (GH) therapy should be continued into young adulthood, beyond achievement of final height, when GH deficiency persists, to summarize the recent evidence of the benefits of GH treatment during the transition period, and to address cur-rently debated issues involving diagnosis, treatment, and transition of care.MethodsPrimary literature was reviewed in the fol-lowing areas: the benefits and risks of GH therapy during the transition period, the diagnostic criteria for GH defi-ciency and recommended testing procedures during transi-tion, the optimal dose of GH therapy during transition, and the factors to consider in the transition of care from the pediatric to the adult endocrinologist.ResultsStudies support the continuation of GH therapy through the transition period until accrual of peak bone mass, rather than cessation of GH treatment when adult height has been achieved. Continued GH treatment in patients with persistent GH deficiency after achieving final height has been associated with significant additional bone maturation and improved overall metabolic profile. The selection of the most appropriate methods and cutoff val-ues for retesting GH deficiency during the transition period remains a challenge. Reassessment of the optimal GH dose is a key component of transition care.ConclusionFor patients with GH deficiency that will likely persist into adulthood, it is important to begin discussing possible continuation of GH treatment early in the management of GH deficiency. Clear communica-tion between pediatric and adult endocrinologists will be needed to determine the timing of the patient-care transi-tion and to minimize the interruption of GH therapy during the transition period. (Endocr Pract. 2012;18:256-268)  相似文献   

5.
The potential role of exogenous GH in treating short children born small for gestational age (SGA) has been discussed since the early 1960s. Pivotal studies in Europe during the last 10 years have shown that GH treatment of short children born SGA during childhood and early puberty (1) normalizes stature, (2) increases final height above predicted height and (3) allows children to reach their target height. A study now under way in the USA will provide additional much needed data about efficacy and safety of GH treatment in intrauterine growth retardation/SGA.  相似文献   

6.
Much has been learned over the last two decades regarding the management of growth hormone (GH) deficiency (GHD) in children and adolescents. However, significant divergence and debate continue to exist on the ideal approach to the management of GHD. Despite active controversy, several paradigms have recently emerged which should guide the treatment of GHD patients as we head into the new millennium. The primary objectives of GH therapy remain the normalization of height in childhood and the attainment of normal adult height, but the recognition of the metabolic roles of GH define additional therapeutic benefits. A daily subcutaneous injection of recombinant human GH in a dose range of 25-50 microg/kg/day has been established as the mainstay of therapy. Alternative modes of treatment including GH-releasing hormone (GHRH), GH secretagogues and depot GH have been developed, but evaluation of their clinical utility remains incomplete. Careful monitoring and follow-up of pediatric GHD patients by a pediatric endocrinologist are essential. Accurate determination of height velocity and interval height increases (expressed as the change in height z score) continue to be the most important parameters in monitoring the response to treatment. Monitoring serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 has gained utility in the assurance of compliance and safety, but does not always correlate well with the growth response. A clear role for a biochemical as well as an auxological monitoring approach has nonetheless been established. The comparison of attained growth response to that which has been calculated by various modeling approaches is also becoming a valuable monitoring tool. Significant side effects of GH therapy are quite rare and are easily identified and addressed during close follow-up. Despite previous concerns, it now appears that in the absence of additional risk factors there is no evidence that long-term recipients of GH are at any increased risk of developing diabetes, slipped capital femoral epiphysis, brain tumor recurrence or leukemia. Although GHD may or may not persist into adult life, adult GHD diagnostic criteria and the importance of GH therapy in adult GHD patients have recently been established. Therefore, the pediatric endocrinologist now has a crucial role in guiding the transition to adult GHD management in collaboration with the adult endocrinologist. In the years to come, with the continued investigation and collaborationof experts from around the world, the approach to GH treatment will undoubtedly continue to evolve and improve.  相似文献   

7.
J C Job 《Hormone research》1989,31(4):149-152
In the past, growth hormone (GH) deficiency has usually been diagnosed too late in dwarfed children, so that substitution therapy was not able to obtain a final height in the normal range for most of them. Complete catch-up of growth in hypopituitary patients needs early diagnosis and early treatment. This requires: (1) that full attention be paid to any insufficiency of length or height increment in infants and young children; (2) that evaluation of GH secretion be performed in spite of the practical difficulties encountered in small patients, and (3) that the interpretation of hormonal measurements be carefully discussed. Though the overall results obtained to date in treating very young GH-deficient children have not been completely satisfactory, it is certain that those whose height was within or near the limits of -2 SD at the onset of treatment maintained a normal height. The relationship of end results with the doses of GH used remains to be investigated. Future results will probably be improved more by earlier diagnosis and by using daily injections than by an increase in the annual dose of GH.  相似文献   

8.
BACKGROUND: Medulloblastoma is the most frequent primary solid central nervous system tumour in children. The 5-year survival rate is at present at about 60%. Height in general is severely compromised in survivors. The present study is an extension of the investigation by the author's group of the effect of exogenous growth hormone (GH) among medulloblastoma patients. METHODS: A total of 113 patients with medulloblastoma (out of 682 cases documented in KIGS, Pfizer International Growth Database) were treated with GH till final height was achieved. At the start of GH therapy (median dose 0.18 mg/kg/week), patients were 8.9 years old and had a median height SDS of -1.6. RESULTS: After 6.8 years of GH, final height SDS was -1.9, reflecting an overall loss in height of 0.3 SDS. This contrasted with an age-matched group of patients with idiopathic growth hormone deficiency (iGHD, n = 1,986), whose gain in height was 1.6 SDS on the same dose. The index of responsiveness averaged -0.9 during the first prepubertal year and -2.0 during total pubertal growth, thus indicating a major impairment in responsiveness to GH as compared to iGHD. Height at GH start, which correlated positively with the age at disease onset, was found to be the major determinant of final height. CONCLUSIONS: Our findings show that attempts to improve the height outcome in medulloblastoma must involve earlier recognition and treatment with higher-than-replacement doses of GH; additionally, modifications in cancer treatment programs need to be considered, such as lowering the dose of craniospinal irradiation or avoiding it as far as possible.  相似文献   

9.
There is no consensus regarding the optimal dosing of recombinant human growth hormone (rhGH) for children with growth hormone deficiency (GHD). Our objective was to evaluate the final adult height (FAH) in children with idiopathic GHD treated with a fixed rhGH dose of 0.18 mg/kg/week. We reviewed all charts of patients with idiopathic GHD treated with rhGH since 1985 who reached FAH. Ninety-six patients were treated for an average of 5.4 years. The mean age was 11.9 years, the mean height -2.87 standard deviation score (SDS) and the mean FAH was -1.04 SDS. Females had a lower predicted adult height than males at the initiation of therapy (-2.0 vs. -1.01 SDS; p = 0.0087) but a higher FAH - predicted adult height (1.08 vs. 0.04 SDS; p = 0.0026). In multiple regression analysis, the FAH SDS was positively related to the midparental height SDS, the height SDS at GH initiation and growth velocity during the first year of therapy, and negatively correlated with peak GH and bone age at initiation (r(2) = 0.51; p < 0.005). Treatment of children with idiopathic GHD with a fixed dose of 0.18 mg/kg/week rhGH is sufficient to reach FAH within 2 SDS of the normal population range (84%) with an average FAH within -0.5 SDS of midparental height.  相似文献   

10.
Recent reports have shown that high-dose growth hormone (GH) treatment in short children born with small for gestational age (SGA) resulted in a pronounced acceleration of linear growth. We describe the results of multicenter trials of recombinant human GH (rhGH) treatment in short SGA children in Japan. Two clinical studies were performed and the results were combined. Study 1 comprised 104 SGA children and study 2 comprised 61 SGA children. The patients were divided into three groups: group 1 consisted of 20 patients (13 boys and 7 girls) who received rhGH 25 microg/kg per day six or seven times per week in the first year and 50 microg/kg per day in the second year and thereafter; group 2 consisted of 48 patients (28 boys, 20 girls) who received rhGH 45/50 microg/kg per day; group 3 consisted of 44 patients (28 boys, 16 girls) who received 90/100 microg/kg per day. The mean increments in height SDS were 0.46, 0.67 and 0.94 SD in boys and 0.49, 0.79 and 0.93 SD in girls in groups 1, 2 and 3, respectively. The mean increment in height SDS at 2 years in group 3 was significantly greater than that in group 1, but it was not significantly different from that in group 2 in boys and girls. Our data demonstrated that high-dose GH administration significantly improved height velocity and height SDS in short SGA children. Additional studies are necessary to optimize a long-term GH treatment regimen and combined luteinizing hormone releasing hormone analog treatment for final height. Careful observation is also necessary to assess the metabolic effects of high-dose GH, especially on carbohydrate metabolism.  相似文献   

11.
Shalet S 《Hormone research》2004,62(Z4):15-22
The period of growth from late puberty to full adult maturation, termed the transition period, is important for tissue maturation. Peak bone mass, muscle mass and strength are usually attained in this period. However, it is common clinical practice in children with growth hormone deficiency (GHD) to discontinue growth hormone (GH) treatment in adolescence after attainment of final height. Therefore, patients with childhood-onset GHD that continues into adulthood and who do not receive treatment as adults may experience more severe consequences than patients who acquire GHD as an adult. Recent studies indicate that bone and muscle maturation are attenuated if GH treatment is discontinued at final height. Furthermore, these patients will also develop cardiovascular risk factors that are normally associated with GHD in adults. Much debate surrounds when retesting for GHD should be carried out and when GH treatment should be restarted in adolescents; many of these patients will not have severe GHD according to the criteria set for adults. The transition period is an appropriate time to modify GH doses. Finally, registries exist that have recorded clinical treatment experiences for children and adults. Tools that collect and analyse data provide an important opportunity to investigate issues related to transition.  相似文献   

12.
BACKGROUND: The aim of this retrospective analysis was to evaluate the effects of growth hormone (GH) treatment on testicular development in boys with idiopathic short stature (ISS) and isolated GH deficiency (IGHD) followed in the KIGS (Pharmacia International Growth Database). METHODS: For inclusion in the study, the patients had to have received more than 1 year of prepubertal GH treatment, at least 4 consecutive years of GH treatment in total, and to have attained their final height, defined as a height velocity of less than 2 cm/year. Data on 107 boys in the KIGS database have been analyzed. RESULTS: No significant differences in duration of GH treatment and testicular volume at the start of treatment or at final height were found between the boys with ISS and those with IGHD. The progression of testicular volume in boys with ISS or IGHD during GH treatment did not differ from the reference population. CONCLUSIONS: This analysis shows that GH treatment does not alter testicular growth in boys with ISS or IGHD. However, prospective controlled studies are needed to rule out moderate attenuating or stimulating effects.  相似文献   

13.
Skeletal dysplasias comprise a diverse group of conditions that usually compromise both linear growth and body proportions. It is of theoretical interest to evaluate the effect of GH treatment on linear growth, body proportion and final height in the different skeletal dysplasias. Reported experience of GH treatment in short children with skeletal dysplasia is sparse and often limited to short treatment periods and knowledge of its effects on final height and body proportion is generally lacking. Formal studies are almost all confined to achondroplasia as the most common entity. First-year response is typically a 2-3 cm increase in growth velocity in prepubertal children, or a gain of about 0.5 SDS or less in relative height from a baseline level of -4 to -5 SDS. GH treatment for up to 5 years in achondroplasia can produce a total height gain of about 1 SDS. Apart from achondroplasia, treatment of hypochondroplasia and dyschondrosteosis with GH has been reported in a small number of patients. Long-term data are, however, lacking. Of theoretical interest is that in many syndromic or non-syndromic short-statured children body proportion, i.e. trunk to leg length ratio, does not seem to be dependent on the degree of GH sufficiency and does not seem to be changed by GH treatment. GH treatment, at least in the prepubertal period, does seem to influence degree of disproportion.  相似文献   

14.
BACKGROUND: The present survey among members of the ESPE on current practice in diagnosis and treatment of growth hormone (GH) deficiency (GHD) is of great clinical relevance and importance in the light of the recently published guidelines for diagnosis and treatment of GHD by the Growth Hormone Research Society. We have found much conformity but also numerous discrepancies between the recommendations of the Growth Hormone Research Society and the current practice in Europe. RESULTS: We found that 80% of the pediatric endocrinologists included insulin-like growth factor I (IGF-I) in their initial evaluation of a short child suspected of having GHD, whereas only 22% used GH provocative testing alone in the initial evaluation of a short child. Sixty-eight percent confirmed the diagnosis of GHD using two separate provocative tests. In the present survey cutoff values for GH provocative testing clustered around two values; 10 ng/ml and 20 mU/l. Interestingly, these two values, differing by a factor of 2, were also the most prevalent cutoff values among those who reported their assay to be calibrated against the WHO International Reference Preparation 80/505 where the conversion factor between milligrams and milliunits is 2.6. This suggests that the selection of cutoff values is based on tradition rather than on specific GH assay characteristics. In addition, only 63% of the respondents actually knew what GH assay they were using, and only 57% knew how their GH assay was calibrated. Dosing of GH at the start of treatment was reported according to body surface by 39%, whereas 59% were dosing according to body weight. GH dose adjustment was primarily based on growth response and height during auxological assessment every 3-4 months (height velocity, change in height velocity or change in height standard deviation scores) as indicated by almost 70% of the respondents. However, dose adjustment according to body surface (38%) and body weight (44%) was also quite common. Sixty-five percent measures IGF-I regularly (at least once a year) during GH therapy in children, and to our surprise 17% reported that they adjust the GH dose according to the IGF-I levels. SUMMARY: In summary, we have found large heterogeneity in the current practice of diagnosis and treatment of childhood GHD among European pediatric endocrinologists. Especially standardizations of GH assays and cutoff values are urgently required to ensure a uniform and correct diagnosis and therapy of GHD in the future.  相似文献   

15.
The three most common clinical situations which have given rise to diagnostic and therapeutic issues involve the child treated for: (1) a brain tumour or extracranial tumour with radiotherapy (XRT) which includes an XRT dose of > or =30 Gy to the hypothalamic-pituitary axis; (2) acute lymphoblastic leukaemia with a cranial XRT dose of 18-24 Gy, and (3) haematological malignancy or solid tumour requiring total body irradiation (dose 10-14 Gy) and BMT. The decision about the intent to treat and the timing of GH replacement needs to be taken in collaboration with the paediatric oncologist who will provide guidance about overall prognosis and the risk of relapse. After a dose of > or =30 Gy to the hypothalamic pituitary axis the risk of GH deficiency (GHD) 2 years later is very high (>50%) and therefore there is 'solid' epidemiological evidence, which predicts outcome. Therapeutically the choice is whether or not to offer GH replacement at 2 years in the presence of biochemical evidence of GHD but independent of auxology, or wait until the growth rate declines. Diagnostically the IGF-1 SDS is more useful than previously thought, particularly if XRT-induced GHD is severe; there may, however, be systematic discordancy between the GH responses to different pharmacological stimuli (ITT vs. arginine). For irradiated children in categories 2 and 3, greater emphasis is placed on auxology in determining the need for assessment of GH status. Early rather than very precocious puberty is a real issue and needs to be actively treated with a GnRH analogue if final height appears to be significantly compromised.  相似文献   

16.
The experience gained since 1987, through observation of 85 girls with Turner syndrome under growth hormone (GH) treatment, has enabled the analysis of one of the largest cohorts. Our results show that age, karyotype and height reflect the heterogeneity of the patients examined at our growth centre. In 47 girls, followed over 4 years on GH (median dose 0.72 IU/kg/week), the median age was 9.4 years and mean height SDS was -3.55 (Prader) and -0.14 (Turner-specific), while height and other anthropometrical parameters [weight, body mass index, sitting height (SH), leg length (LL) SH/LL, head circumference, arm span] were documented and compared to normative data as well as to Turner-specific references established on the basis of a larger (n = 165) untreated cohort from Tübingen. The latter data are also documented in this article. Although there was a trend towards normalization of these parameters during the observation period, no inherent alterations in the Turner-specific anthropometric pattern occurred. In 42 girls who started GH treatment at a median age of 11.8 years, final height (bone age >15 years) was achieved at 16.7 years. The overall gain in height SDS (Turner) from start to end of GH therapy was 0.7 (+/- 0.8) SD, but 0.9 (+/- 0.6) SD from GH start to onset of puberty (spontaneous 12.2 years, induced 13.9 years) and -0.2 (+/- 0.8) from onset of puberty to end of growth. Height gain did not occur in 12 patients (29%) and a gain of > 5 cm was only observed in 16 patients (38%). Height gain correlated positively with age at puberty onset, duration, and dose of GH, and negatively with height and bone age at the time GH treatment started. Final height correlated positively with height SDS at GH start and negatively with the ratio of SH/LL (SDS). We conclude that, in the future, GH should be given at higher doses, but oestrogen substitution should be done cautiously, owing to its potentially harmful effect on growth. LL appears to determine height variation in Turner syndrome and the potential to treat short stature successfully with GH.  相似文献   

17.
OBJECTIVE: We report final heights in a pair of monozygotic twins, one unaffected and the other affected with idiopathic and isolated growth hormone (GH) deficiency treated with human GH, and discuss the effect of GH dosage on the attainment of the genetic height potential in GH deficiency. PATIENTS: Male monozygotic twins were born at 35 weeks of gestation; birth weights were 1,876 g in the unaffected and 1,510 g in the affected twin. At 4.9 years of age, the affected twin was studied for short stature (-3.38 SD) and was diagnosed as having idiopathic and isolated GH deficiency, whereas the unaffected twin was normal in height (+/- 0 SD). GH treatment was started at the age of 5.7 years and continued throughout childhood and adolescence. The average dose of GH administered during the treatment period was 0.35 IU (0.12 mg)/kg/week. The affected twin appeared to grow normally without other hormone replacement and achieved a final height of 165.6 cm (-0.86 SD) compared with that of 166.4 cm (-0.71 SD) in the unaffected twin at 17.5 years of age. CONCLUSION: Our results indicate that a relatively low dose of GH treatment started at an early age may preserve genetic height potential in patients with isolated GH deficiency.  相似文献   

18.
This series of experiments was conducted to evaluate the growth hormone (GH) releasing activity of intranasally administered His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6, SK&F 110679) in conscious dogs. Intranasal administration of GHRP-6 increased plasma growth hormone levels in the conscious dog in a dose-related manner. Doses of 0.25 and 0.5 mg/kg produced GH levels of 11.3 +/- 4.8 ng/ml and 28.6 +/- 8.0 ng/ml, respectively. Peak levels were observed 15 minutes after dosing and GH levels were elevated for up to 105 minutes after intranasal dosing. Intranasal administration of isotonic saline did not produce any change in basal (negligable) GH levels. When GHRP-6 was given by the intravenous route, a maximal dose of 0.5 mg/kg, produced a peak plasma GH concentration of 60.8 +/- 10.5 ng/ml. Saline had no effect on GH levels when given intravenously. Using the intravenous and intranasal GH response data (i.e., area under the time-response curves), the intranasal bioavailability of GHRP-6 was estimated to be 34.4 to 44.9%. The results of these studies suggest that significant activity and excellent bioavailability can be achieved when GHRP-6 is administered by the intranasal route to conscious dogs. Based on these results, the intranasal activity of GHRP-6 should be evaluated in man. The successful intranasal administration of this peptide in man should provide GH therapy with reduced patient discomfort and better patient compliance when compared to presently available parenterally administered remedies.  相似文献   

19.
Z Zadik  U Mira  H Landau 《Hormone research》1992,37(4-5):150-155
The aim of this study was to test the effect of growth hormone (GH) therapy on final height in peripubertal boys with idiopathic short stature in whom a subnormal integrated concentration of GH (< 3.2 micrograms/l) was found. Twenty-eight peripubertal children were studied. Height was below 2 SD for age, growth velocity was < 4.5 cm/year, bone age was more than 2 SD below mean for age and GH response to provocative tests was more than 10 micrograms/l. Eleven subjects (group B) were treated with recombinant GH 0.75 unit/kg/week, divided into 3 weekly doses for 2 years, and then the same weekly dose divided into daily injections was administered until final height was attained. Seventeen untreated children (group A) who were followed until cessation of growth served as controls. The GH-treated patients reached their target heights (-2.1 +/- 0.5, mean +/- SD in SDS) and predicted heights (-1.8 +/- 0.8) determined by the Bayley and Pinneau method, while the final heights of the untreated patients were significantly lower than their target heights and their predicted final heights (-2.7 +/- 0.7, -1.8 +/- 1.0 and -2.7 +/- 0.7, respectively). The main effect of GH was observed during the 1st year of treatment when height velocity was significantly higher in the GH-treated group than in the untreated one (9.3 +/- 2.1 vs. 5.3 +/- 1.1, respectively, p < 0.001). The high cost of the treatment in this specific age group should be weighed against the results.  相似文献   

20.
M Zachmann 《Hormone research》1991,36(3-4):141-146
Testosterone and synthetic androgens have formerly been used indiscriminately, but are now applied more selectively. They are the only treatment of primary hypogonadism, but are also useful in gonadotropin deficiency and constitutional delay. 17-Alkylated androgens are no longer used. Oral testosterone undecanoate is not suitable for adolescents because of unreliable absorption. The prototype disorder where replacement is necessary is congenital anorchia. As a physiological replacement, an initial dose of 35 mg/m2 per month for 6 months, followed by 70 mg/m2 for 1 year, and 150 mg/m2 thereafter, is recommended. No general rules can be given for other types of primary hypogonadism. In testicular atrophy after cryptorchidism, defects of testosterone biosynthesis, galactosemia or other causes, it is advisable to carry out periodic testosterone determinations and to wait until the levels drop below normal. Progress has been made in the treatment of gonadotropin deficiency, and pulsatile gonadotropin-releasing hormone (GnRH) has been shown to be effective in the hypothalamic type. Nevertheless, androgens still have a temporary place in this condition. In constitutional delay of growth and adolescence, treatment is not necessary somatically, but there are often psychosocial reasons. Gonadotropins, GnRH or growth hormone (GH)-releasing hormone have been used. Also treatment with human GH is successful in accelerating height velocity. The most simple and economic treatment is still testosterone in a physiological dose for 3-6 months. Oxandrolone or other synthetic androgens have no advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号