首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analogs were tested as potential inhibitors of cell surface sialylation. Peracetylated 2-acetylamino-2-deoxy-3-O-methyl-d-mannose decreases cell surface sialylation in Jurkat cells in a dose-dependent manner up to 80%, quantified by flow cytometry and enzyme-linked lectin assays. High-performance liquid chromatography experiments revealed that not only the concentration of membrane bound but also of cytosolic sialic acid is reduced in treated cells. We have strong evidence that the observed reduction of sialic acid expression in cells is caused by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase. 2-Acetylamino-2-deoxy-3-O-methyl-d-mannose inhibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase. Binding kinetics of the inhibitor and human N-acetylmannosamine kinase were evaluated using surface plasmon resonance. Specificity studies with human N-acetylglucosamine kinase and hexokinase IV indicated a high specificity of 2-acetylamino-2-deoxy-3-O-methyl-d-mannose for MNK. This substance represents a novel class of inhibitors of sialic acid expression in cells, targeting the key enzyme of sialic acid de novo biosynthesis.  相似文献   

3.
  • 1.1. The sialic acid content of newborn calf serum (4.8 μmol/ml) is approx. 3-fold higher than that of mature animals (1.4 μmol/ml) and decreases to 2.4 μmol/ml at 20 days of age. Colostrum-fed and colostrum-deprived calves have similar levels of sialic acid from birth to 14 days of age.
  • 2.2. The high level of sialic acid in newborn calf serum is due predominantly to N-acetylneuraminic acid, since this sialic acid accounts for 93% of the total and since <5% of the sialic acid is O-acetylated.
  • 3.3. Comparison of day 0 and day 20 serum by gel filtration and by SDS polyacrylamide gel electrophoresis demonstrates that the increase in sialic acid is associated with increased production and/or sialylation of components with MW of 45–60 kDa.
  • 4.4. A high percentage (64%) of the sialic acid in newborn calf serum is detected with the lipid-linked sialic acid assay, relative to 20 day old (25%) or mature (18%) animals.
  • 5.5. This indicates that the glycoproteins of newborn calf serum are more efficiently extracted under the conditions of this assay than glycoproteins of mature serum.
  相似文献   

4.
Hereditary inclusion body myopathy (HIBM) is a unique group of neuromuscular disorders characterized by adult-onset, slowly progressive distal and proximal muscle weakness, which is caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme in the biosynthetic pathway of sialic acid. In order to investigate the consequences of the mutated GNE enzyme in muscle cells, we have established cell cultures from muscle biopsies carrying either kinase or epimerase mutations. While all myoblasts carrying a mutated GNE gene show a reduction in their epimerase activity, only the cells derived from the patient carrying a homozygous epimerase mutation present also a significant reduction in the overall membrane bound sialic acid. These results indicate that although mutations in each of the two GNE domains result in an impaired enzymatic activity and the same HIBM phenotype, they do not equally affect the overall sialylation of muscle cells. This lack of correlation suggests that the pathological mechanism of the disease may not be linked solely to the well-characterized sialic acid pathway.  相似文献   

5.

Aim

Female cardiac transplant recipients' aerobic capacity is 60% lower than sex and age-predicted values. The effect of exercise training on restoring the impaired aerobic endurance and muscle strength in female cardiac transplant recipients is not known. This study examined the effect that aerobic and strength training have on improving aerobic endurance and muscle strength in female cardiac transplant recipients.

Methods

20 female cardiac transplant recipients (51 ± 11 years) participated in this investigation. The subjects performed a baseline six-minute walk test and a leg-press strength test when they were discharged following cardiac transplantation. The subjects then participated in a 12-week exercise program consisting of aerobic and lower extremity strength training. Baseline assessments were repeated following completion of the exercise intervention.

Results

At baseline, the cardiac transplant recipients' aerobic endurance was 50% lower than age-matched predicted values. The training program resulted in a significant increase in aerobic endurance (pre-training: 322 ± 104 m vs. post-training: 501 ± 99 m, p < 0.05) and leg-press strength (pre-training: 48 ± 16 kg. vs. post-training: 78 ± 27 kg, p < 0.05).

Conclusion

Aerobic and strength training are effective interventions that can partially restore the impaired aerobic endurance and strength found in female cardiac transplant recipients.  相似文献   

6.

Background

Developmental haemostatic studies may help identifying new elements involved in the control of key haemostatic proteins like antithrombin, the most relevant endogenous anticoagulant.

Results

In this study, we showed a significant reduction of sialic acid content in neonatal antithrombin compared with adult antithrombin in mice. mRNA levels of St3gal3 and St3gal4, two sialyltransferases potentially involved in antithrombin sialylation, were 85% lower in neonates in comparison with adults. In silico analysis of miRNAs overexpressed in neonates revealed that mir-200a might target these sialyltransferases. Moreover, in vitro studies in murine primary hepatocytes sustain this potential control.

Conclusions

These data suggest that in addition to the direct protein regulation, microRNAs may also modulate qualitative traits of selected proteins by an indirect control of post-translational processes.  相似文献   

7.

Background

Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.

Methodology/Principal Findings

In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.

Conclusions/Significance

These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.  相似文献   

8.

Background

Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST) at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D), and the other with five contiguous arginine residues (5R).

Results

Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP) that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc).

Conclusion

Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.  相似文献   

9.

Objective

HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation.

Methods

qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (GneM712T/M712T mouse) vs control mice (Gne+/+ mouse).

Results

St3gal5 mRNA levels were significantly lower in GneM712T/M712T mouse muscles vs Gne+/+ mouse muscles (64.41%±10% of Gne+/+ levels). GM3 ganglioside levels showed also a significant decrease in GneM712T/M712T mouse muscle compared to Gne+/+ mouse muscle (18.09%±5.33% of Gne+/+ levels). Although these GneM712T/M712T mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides.

Conclusion

The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.  相似文献   

10.

Background

The erythrocyte binding antigen-175 (EBA-175) on Plasmodium falciparum merozoites mediates sialic acid dependent binding to glycophorin A on host erythrocytes and, therefore, plays a crucial role in cell invasion. Dimorphic allele segments have been found in its encoding gene with a 342 bp segment present in FCR-3 strains (F-segment) and a 423 bp segment in CAMP strains (C-segment). Possible associations of the dimorphism with severe malaria have been analysed in a case-control study in northern Ghana.

Methods

Blood samples of 289 children with severe malaria and 289 matched parasitaemic but asymptomatic controls were screened for eba- 175 F- and C-segments by nested polymerase chain reaction.

Results

In children with severe malaria, prevalences of F-, C- and mixed F-/C-segments were 70%, 19%, and 11%, respectively. The C-segment was found more frequently in severe malaria cases whereas mixed infections were more common in controls. Infection with strains harbouring the C-segment significantly increased the risk of fatal outcome.

Conclusion

The results show that the C-segment is associated with fatal outcome in children with severe malaria in northern Ghana, suggesting that it may contribute to the virulence of the parasite.  相似文献   

11.

Background

LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored.

Methodology/Principal Findings

In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage.

Conclusions/Significance

This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation and α-dystroglycan hyperglycosylation in muscle should be safe.  相似文献   

12.
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.  相似文献   

13.

Aims

Root elongation tests are sensitive bioassays for testing metal toxicity in nutrient solutions. The metal speciation and, hence, metal exposure conditions are little controlled in the traditional set-up. A resin buffered solution system was developed to overcome this issue.

Methods

Barley (Hordeum vulgare L.) root elongation was tested in aerated 140 mL solution batch systems supplied with 3.3 g Dowex resin for two plants. Copper toxicity was measured in presence or absence of the resin (+R/?R) and in presence or absence of a metal complexing ligand (+NTA; nitrilotriacetic acid/?NTA). In addition, the toxicity in the traditional set without resin and with daily solution replacement was included as a reference.

Results

Metal desorption from the resin is fast in these systems (k?=?0.82 h?1). Total dissolved Cu roughly halved during 4 days in ?R/?NTA systems due to uptake, while it increased by 30 % in the +R/?NTA, probably due to complexation reactions by root-derived molecules. The toxicity (50 % reduction in root length, EC50) of the initial free Cu2+ was equal in all resin or chelate buffered systems and in the solutions with daily replacement, whereas this threshold was significantly larger in the ?R/?NTA due to Cu2+ uptake and complexation reactions.

Conclusion

The resin method is a convenient system for high throughput screening of metal toxicity and avoids uncertainties in metal speciation inherent to chelator buffered systems. Details are given how to prepare the resin to obtain a target metal ion activity.  相似文献   

14.

Background

Caenorhabditis elegans sarcomeres have been studied extensively utilizing both forward and reverse genetic techniques to provide insight into muscle development and the mechanisms behind muscle contraction. A previous genetic screen investigating early muscle development produced 13 independent mutant genes exhibiting a Pat (paralyzed and arrested elongation at the two-fold length of embryonic development) muscle phenotype. This study reports the identification and characterization of one of those genes, pat-9.

Results

Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19) as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP) experiments showed that PAT-9 is present on certain gene promoters.

Conclusions

We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s) of the muscle attachment sites.  相似文献   

15.
Varietal differences of quinoa’s tolerance to saline conditions   总被引:1,自引:0,他引:1  

Aims

This study aimed to assess varietal differences of quinoa’s tolerance to salinity and to investigate physiological mechanisms conferring these differences.

Methods

Production of biomass in fourteen varieties grown under saline conditions was analysed in a pot experiment. For two contrasting varieties, the Danish variety Titicaca and the Bolivian variety Utusaya gas exchange, chlorophyll content index (CCI), fluorescence and ion relations were studied.

Results

Responses to salinity differed greatly among the varieties; least affected were two varieties from the Bolivian altiplano and a variety from Peru. Titicaca and Utusaya both had substantially increased K+ concentrations in the leaf sap. But, Utusaya was much more efficient in restricting xylem Na+ loading. Xylem Na+ and K+ loading were found to be uncoupled. Utusaya maintained a relatively high stomatal conductance resulting in an only 25% NaCl-induced reduction in net CO2 assimilation compared to a 67% reduction in salt treated Titicaca plants. Maximum photochemical efficiency of PSII was not affected by salinity.

Conclusion

In addition to maintaining high gas exchange, tolerant varieties better control xylem Na+ loading. To what extent this control is related to radial root Na+ uptake or to the activity of Na+/H+-exchangers at the xylem parenchyma boundary remains to be studied.  相似文献   

16.

Key message

By comparing 195 varieties in eight trials, this study assesses nitrogen use efficiency improvement in high and low nitrogen conditions in European winter wheat over the last 25 years.

Abstract

In a context where European agriculture practices have to deal with environmental concerns and nitrogen (N) fertiliser cost, nitrogen use efficiency (NUE) has to be improved. This study assessed genetic progress in winter wheat (Triticum aestivum L.) NUE. Two hundred and twenty-five European elite varieties were tested in four environments under two levels of N. Global genetic progress was assessed on additive genetic values and on genotype × N interaction, covering 25 years of European breeding. To avoid sampling bias, quality, precocity and plant height were added as covariates in the analyses when needed. Genotype × environment interactions were highly significant for all the traits studied to such an extent that no additive genetic effect was detected on N uptake. Genotype × N interactions were significant for yield, grain protein content (GPC), N concentration in straw, N utilisation, and NUE. Grain yield improvement (+0.45 % year?1) was independent of the N treatment. GPC was stable, thus grain nitrogen yield was improved (+0.39 % year?1). Genetic progress on N harvest index (+0.12 % year?1) and on N concentration in straw (?0.52 % year?1) possibly revealed improvement in N remobilisation. There has been an improvement of NUE additive genetic value (+0.33 % year?1) linked to better N utilisation (+0.20 % year?1). Improved yield stability was detected as a significant improvement of NUE in low compared to high N conditions. The application of these results to breeding programs is discussed.  相似文献   

17.
The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.  相似文献   

18.

Objectives

To evaluate the characteristics of a novel human cell line, F2N78, including growth performance, physicochemical properties, and biological activity via direct comparison with CHO cells.

Results

The culture performance and physicochemical properties of antibodies produced from F2N78 and CHO cells were compared. For charge variants, antibodies produced from F2N78 cells contained a greater acidic charge variants than CHO cells. Regarding main glycoforms, degree of galactosylation was 52% in CT-A produced from F2N78 cells compared to CHO cells (37%). For sialic acid forms, α-2,6-linked sialic acid and N-acetylneuraminic acid (NANA) residues were observed in antibodies produced from F2N78 cells. In contrast, only α-2,3 linked sialic acid forms were detected in antibodies produced from CHO cells, and NANA and N-glycolylneuraminic acid were detected. Hybrid structure and bisecting structure were only observed in F2N78 cells.

Conclusions

F2N78 cells stably produced antibodies with human specific N-glycan. The novel expression system based on human cells may facilitate the development of an alternative host cell for production of recombinant proteins.
  相似文献   

19.

Background

Voltage-gated Na+ channels (Nav) are responsible for the initiation and conduction of neuronal and muscle action potentials. Nav gating can be altered by sialic acids attached to channel N-glycans, typically through isoform-specific electrostatic mechanisms.

Methods

Using two sets of Chinese Hamster Ovary cell lines with varying abilities to glycosylate glycoproteins, we show for the first time that sialic acids attached to O-glycans and N-glycans within the Nav1.4 D1S5–S6 linker modulate Nav gating.

Results

All measured steady-state and kinetic parameters were shifted to more depolarized potentials under conditions of essentially no sialylation. When sialylation of only N-glycans or of only O-glycans was prevented, the observed voltage-dependent parameter values were intermediate between those observed under full versus no sialylation. Immunoblot gel shift analyses support the biophysical data.

Conclusions

The data indicate that sialic acids attached to both N- and O-glycans residing within the Nav1.4 D1S5-S6 linker modulate channel gating through electrostatic mechanisms, with the relative contribution of sialic acids attached to N- versus O-glycans on channel gating being similar.

General significance

Protein N- and O-glycosylation can modulate ion channel gating simultaneously. These data also suggest that environmental, metabolic, and/or congenital changes in glycosylation that impact sugar substrate levels, could lead, potentially, to changes in Nav sialylation and gating that would modulate AP waveforms and conduction.  相似文献   

20.

Background

Our aim was to compare the effects of a Paleolithic ('Old Stone Age') diet and a diabetes diet as generally recommended on risk factors for cardiovascular disease in patients with type 2 diabetes not treated with insulin.

Methods

In a randomized cross-over study, 13 patients with type 2 diabetes, 3 women and 10 men, were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts; and a Diabetes diet designed in accordance with dietary guidelines during two consecutive 3-month periods. Outcome variables included changes in weight, waist circumference, serum lipids, C-reactive protein, blood pressure, glycated haemoglobin (HbA1c), and areas under the curve for plasma glucose and plasma insulin in the 75 g oral glucose tolerance test. Dietary intake was evaluated by use of 4-day weighed food records.

Results

Study participants had on average a diabetes duration of 9 years, a mean HbA1c of 6,6% units by Mono-S standard and were usually treated with metformin alone (3 subjects) or metformin in combination with a sulfonylurea (3 subjects) or a thiazolidinedione (3 subjects). Mean average dose of metformin was 1031 mg per day. Compared to the diabetes diet, the Paleolithic diet resulted in lower mean values of HbA1c (-0.4% units, p = 0.01), triacylglycerol (-0.4 mmol/L, p = 0.003), diastolic blood pressure (-4 mmHg, p = 0.03), weight (-3 kg, p = 0.01), BMI (-1 kg/m2, p = 0.04) and waist circumference (-4 cm, p = 0.02), and higher mean values of high density lipoprotein cholesterol (+0.08 mmol/L, p = 0.03). The Paleolithic diet was mainly lower in cereals and dairy products, and higher in fruits, vegetables, meat and eggs, as compared with the Diabetes diet. Further, the Paleolithic diet was lower in total energy, energy density, carbohydrate, dietary glycemic load, saturated fatty acids and calcium, and higher in unsaturated fatty acids, dietary cholesterol and several vitamins. Dietary GI was slightly lower in the Paleolithic diet (GI = 50) than in the Diabetic diet (GI = 55).

Conclusion

Over a 3-month study period, a Paleolithic diet improved glycemic control and several cardiovascular risk factors compared to a Diabetes diet in patients with type 2 diabetes.

Trial registration

ClinicalTrials.gov NCT00435240.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号