首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AKT and its substrate BAD have been shown to promote prostate cancer cell survival. Agonists, such as carbachol, and hormones that increase intracellular calcium concentration can activate AKT leading to cancer cell survival. The LNCaP prostate cancer cells express the carbachol-sensitive M(3) -subtype of G protein-coupled receptors that cause increases in intracellular calcium and activate the family of Ca(2+) /calmodulin-dependent protein kinases (CaM Ks). One type of CaM Kinase, CaM Kinase Kinase (CaM KK), phosphorylates several substrates including AKT on threonine 308. AKT phosphorylation and activation enhances cell survival through phosphorylation of BAD protein and the subsequent blockade of caspase activation. Our goals were to examine the mechanism of carbachol activation of AKT and BAD in LNCaP prostate cancer cells and evaluate whether CaM KK may be mediating carbachol's activation of AKT and cell survival. Our results suggest that carbachol treatment of LNCaP cells promoted cell survival through CaM KK and its phosphorylation of AKT. The bacterial toxin anisomycin triggered caspase-3 activation in LNCaP cells that was blocked by carbachol in a CaM KK- and AKT-dependent manner. AKT and BAD phosphorylation were blocked by the selective CaM KK inhibitor, STO-609, as well as siRNA directed against CaM KK. BAD phosphorylation was also blocked by treating cells with the AKT inhibitor, AKT-X, as well as siRNA to AKT. Additionally, epinephrine promoted LNCaP cell survival through activation of AKT that was insensitive to STO-609. Taken together these data suggest a survival role for CaM KK operating through AKT and BAD in LNCaP prostate cancer cells.  相似文献   

2.
Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.  相似文献   

3.
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI‐1 (B‐lymphoma Mo‐MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI‐1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer. The expression of proteins and mRNAs was investigated in endometrial cancer specimens and samples of non‐neoplastic endometrial tissue by Western blot and RT‐PCR, respectively. The impact of BMI‐1 down‐regulation on AKT phosphorylation and expression of genes coding for several phosphatases were studied in HEC1A cells. The results showed that BMI‐1 depletion caused increase in PHLPP1 and PHLPP2 (PH domain and leucine‐rich repeat protein phosphatases 1/2) expression and decrease in phospho‐AKT (pAKT) level. In more advanced tumours with higher metastatic potential, the expression of BMI‐1 was lower compared to tumours less advanced and without lymph node metastasis. There were significant inverse correlations between BMI‐1 and PHLPPs, especially PHLPP1 in normal endometrial samples. The inverse correlation between BMI‐1 and PHLPP1/PHLPP2 expression was observed in PTEN positive but not PTEN negative cancers. Low PHLPP2 expression in tumours predicted poorer overall survival. BMI‐1 impacts on AKT phosphorylation level in endometrial cells by regulation of PHLPP expression.  相似文献   

4.
5.
Pressure in colonic tumours may increase during constipation, obstruction or peri-operatively. Pressure enhances colonocyte adhesion by a c-Src- and actin-cytoskeleton-dependent PKC-independent pathway. We hypothesized that pressure activates mitogenic signals. METHODS: Malignant colonocytes on a collagen I matrix were subjected to 15 mmHg pressure. ERK, p38, c-Src and Akt phosphorylation and PKCalpha redistribution were assessed by western blot after 30 min and PKC activation by ELISA. Cells were counted after 24 h and after inhibition of each signal, tyrosine phosphorylation or actin depolymerization. RESULTS: Pressure time-dependently increased SW620 and HCT-116 cell counts on collagen or fibronectin (P < 0.01). Pressure increased the SW620 S-phase fraction from 28 +/- 1 to 47 +/- 1% (P = 0.0002). Pressure activated p38, ERK, and c-Src (P < 0.05 each) but not Akt/PKB. Pressure decreased cytosolic PKC activity, and translocated PKCalpha to a membrane fraction. Blockade of p38, ERK, c-Src or PI-3-K or actin depolymerization did not inhibit pressure-stimulated proliferation. However, global tyrosine kinase blockade (genistein) and PKC blockade (calphostin C) negated pressure-induced proliferation. CONCLUSIONS: Extracellular pressure stimulates cell proliferation and activates several signals. However, the mitogenic effect of pressure requires only tyrosine kinase and PKCalpha activation. Pressure may modulate colon cancer growth and implantation by two distinct pathways, one stimulating proliferation and the other promoting adhesion.  相似文献   

6.
Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3′-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.  相似文献   

7.
The AKT2 oncogene encodes a protein-serine/threonine kinase that was recently shown to be activated by a variety of growth factors. In addition, we previously showed that AKT2 is abundant in brown fat and skeletal muscle, tissues that are highly insulin responsive and that play a role in glucose metabolism. In this study, we demonstrate that AKT2 is activated in response to stimulation by insulin in a dose- and time-dependent manner in human ovarian carcinoma cells and that activation of AKT2 is abolished in cells pretreated with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase). Activation of AKT2 is manifested by changes in its phosphorylation state. Immunofluorescence experiments demonstrate that AKT2 is translocated to the plasma membrane after insulin stimulation, and this translocation is abolished by wortmannin. Both wild-type AKT2 activated by insulin and constitutively active AKT2, which has been targeted to the membrane by the addition of a myristoylation signal, were found to inactivate glycogen synthase kinase-3 (GSK-3) in vitro. GSK-3 was not inactivated by a catalytically inactive AKT2 mutant. Collectively, these data indicate that activation of AKT2 by insulin is mediated by PI 3-kinase and that GSK-3 is a downstream target of AKT2, suggesting a potentially important role of AKT2 in glycogen synthesis and other GSK-3 signaling pathways. J. Cell. Biochem. 70:433–441, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
11.
12.
The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.  相似文献   

14.
Protein kinase B (AKT) is a serine-threonine kinase that mediates diverse cellular processes in a variety of human diseases. Phosphorylation is always the best studied posttranslational modification of AKT and a connection between phosphorylation and ubiquitination has been explored recently. Ubiquitination of AKT is an important step for its phosphorylation and activation, while whether phosphorylated AKT regulated its ubiquitination status is still unknow. In the present study, we mimic dephosphorylation of AKT by using mutagenesis techniques at both Thr308 and Ser473 into Alanine (AKT-2A). After losing phosphorylation activity, AKT enhances its degradation and prevents itself release from the plasma membrane after insulin stimulation. Fourthermore, AKT-2A is found to be degraded through ubiquitin- proteasome pathway which declared that un-phosphorylation of AKT at both Ser473 and Thr308 sites increases its ubiquitination level. In conclusion, AKT phosphorylated at Ser473 and Thr308 sites have a significant effect on its ubiquitination status.

Abbreviations: AKT: Protein kinase B; Ser: serine; Thr: threonine; IF: immunofluorescence; Epo: Epoxomicin; Baf: Bafilomycin; PBS: phosphate buffer solution  相似文献   


15.
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. However, the mechanisms responsible for RCC metastasis are still needed further illustration. Our present study revealed that a seven-transmembrane receptor G-protein coupled estrogen receptor (GPER) was highly detected in various RCC cell lines such as ACHN, OS-RC-2 and SW839. The activation of GPER by its specific agonist G-1 significantly promoted the in vitro migration and invasion of ACHN and OS-RC-2 cells. G-1 also up regulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. The inhibitor of MMP-9 (Cat-444278), but not MMP-2 (Sc-204092), abolished G-1 induced cell migration, which suggested that MMP-9 is the key molecule mediating G-1 induced RCC progression. Further, G-1 treatment resulted in phosphorylation of AKT and ERK in RCC cells. PI3K/AKT inhibitor (LY294002), while not ERK inhibitor (PD98059), significantly abolished G-1 induced up regulation of MMP-9 in both AHCN and OS-RC-2 cells. Generally, our data revealed that activation of GPER by its specific agonist G-1 promoted the metastasis of RCC cells through PI3K/AKT/MMP-9 signals, which might be a promising new target for drug discovery of RCC patients.  相似文献   

16.
The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca2+ via Ca2+/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment.  相似文献   

17.
It has been well-established that AKT2 plays an important role in the development and progression of colon cancer; however, its precise function remains unclear. In the present study, we found that AKT2 can interact with and phosphorylate hexokinase 2 (HK2), the rate-limiting enzyme in glycolysis. Moreover, threonine phosphorylation dramatically increases its catalytic activity and enhances glycolysis. Mechanistically, AKT2 phosphorylation of HK2 at T473 was found to increase hexokinase activity and lactic acid production. A mutation in the AKT2 phosphorylation site of HK2 substantially reduced the stimulating effects of AKT2 on glycolysis, cellular apoptosis, invasion, tumorigenesis, and metastasis. In addition, AKT2 regulated NF-κB, HIF1Α, MMP2, and MMP9 via the phosphorylation of HK2 at the T473 site. Taken together, AKT2 increases the invasion, tumorigenesis, and metastasis of colon cancer cells in vitro and promotes lung metastasis in nude mice in vivo through the phosphorylation of the T473 site of HK2 by upregulating NF-κB, HIF1α, MMP2, and MMP9. In conclusion, our findings highlight a novel mechanism for the AKT2-HK2-NF-κB/HIF1α/MMP2/MMP9 axis in the regulation of colon cancer progression. Moreover, our results suggest that both AKT2 and HK2 may be potential targets for the treatment of colon cancer.  相似文献   

18.
19.
Landgraf KE  Pilling C  Falke JJ 《Biochemistry》2008,47(47):12260-12269
The protein kinase AKT1 regulates multiple signaling pathways essential for cell function. Its N-terminal PH domain (AKT1 PH) binds the rare signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)], resulting in plasma membrane targeting and phosphoactivation of AKT1 by a membrane-bound kinase. Recently, it was discovered that the Glu17Lys mutation in the AKT1 PH domain is associated with multiple human cancers. This mutation constitutively targets the AKT1 PH domain to the plasma membrane by an unknown mechanism, thereby promoting constitutive AKT1 activation and oncogenesis. To elucidate the molecular mechanism underlying constitutive plasma membrane targeting, this work compares the membrane docking reactions of the isolated wild-type and E17K AKT1 PH domains. In vitro studies reveal that the E17K mutation dramatically increases the affinity for the constitutive plasma membrane lipid PI(4,5)P(2). The resulting PI(4,5)P(2) equilibrium affinity is indistinguishable from that of the standard PI(4,5)P(2) sensor, PLCdelta1 PH domain. Kinetic studies indicate that the effects of E17K on PIP lipid binding arise largely from electrostatic modulation of the dissociation rate. Membrane targeting analysis in live cells confirms that the constitutive targeting of E17K AKT1 PH to plasma membrane, like PLCdelta1 PH, stems from PI(4,5)P(2) binding. Overall, the evidence indicates that the molecular mechanism underlying E17K oncogenesis is a broadened target lipid selectivity that allows high-affinity binding to PI(4,5)P(2). Moreover, the findings strongly implicate the native Glu17 side chain as a key element of PIP lipid specificity in the wild-type AKT1 PH domain. Other PH domains may employ an analogous anionic residue to control PIP specificity.  相似文献   

20.
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH3, NH2, OH), it was found that hydrophobic surfaces modified with CH3 and NH2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH3 and NH2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH3- and NH2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH3- and NH2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号