首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

2.
The aim of this study was to assess EDTA-assisted Pb and Cd phytoextraction potential of locally grown Pelargonium hortorum and Pelargonium zonale. Plants were exposed to different levels of Pb (0–1500?mg kg?1) and Cd (0–150?mg kg?1) in the absence or presence of EDTA (0–5?mmol kg?1). P. hortorum and P. zonale accumulated 50.9% and 42.2% higher amount of Pb in shoots at 1500?mg kg?1 Pb upon addition of 5?mmol kg?1 EDTA. Plant dry biomass decreased 46.8% and 64.3% for P. hortorum and P. zonale, respectively at the combination of 1500?mg kg?1 Pb and 5?mmol kg?1 EDTA. In Cd and EDTA-treated groups, P. hortorum and P. zonale accumulated 2.7 and 1.6-folds more Cd in shoots at 4 and 2?mmol kg?1 EDTA, respectively, in 150?mg Cd kg?1 treatment. Plant dry biomass of P. hortorum and P. zonale was reduced by 46.3% and 71.3%, respectively, in soil having 150?mg Cd kg?1 combined with 5?mmol kg?1 EDTA. Translocation factor and enrichment factor of both plant cultivars at all treatment levels were >1. Overall, the performance of P. hortorum was better than that of P. zonale for EDTA-assisted phytoextraction of Pb and Cd.  相似文献   

3.
A study quantifying the interactive effects of cadmium (Cd) and carbon nanotubes (CNTs) on plant growth and Cd accumulation of pot-cultured Spartina alterniflora was conducted. The experiment consisted of two Cd levels (50, 200 mg kg?1) as well as two CNTs levels (800, 2,400 mg kg?1). As expected, CNTs alleviated higher Cd stress (200 mg kg?1) due to restored shoot growth reduction, retrieved water content and resumed plant height. Furthermore, CNTs mitigated the deleterious effects of Cd stress through improving K+ and Ca2+ contents, while reducing Na+/K+ and Na+/Ca2+ ratios, regardless of the level of Cd stress. The proline contents in combined Cd and CNTs treatments were lower than Cd alone, suggesting that CNTs could reduce production of organic solutes under Cd stress. The results also showed higher Cd accumulation in roots than shoots, and both were improved by CNTs, except inhibition in roots under higher Cd stress (200 mg kg?1). It appears that CNTs may not significantly affect negative Cd effects on growth of S. alterniflora, but improve total Cd accumulation under lower Cd stress (50 mg kg?1). However, under higher Cd stress (200 mg kg?1), CNTs restored the reduced plant growth, improved and reduced Cd accumulation in shoots and roots, respectively. Therefore, the effects of CNTs on plant growth and Cd accumulation are different, and levels of Cd stress should be considered when evaluating the combined application of CNTs and S. alterniflora on phytoremediation of Cd pollution.  相似文献   

4.
Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L?1, indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg?1 of Cd) and Cd2 (50 mg kg?1 of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg?1, and 174.99 and 1181.96 mg kg?1 under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability.  相似文献   

5.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

6.
Dried Distiller’s Grains with Solubles (DDGS), a by-product of bio-ethanol production from maize and other cereals, is increasingly used as a feed additive. In this study, five Fusarium toxins, including fumonisin B1 (FB1), fumonisin B2 (FB2), deoxynivalenol (DON), zearalenone (ZEN) and beauvericin (BEA) were quantified by LC-MS/MS in 59 corn-DDGS samples. In addition, the fumonisin level in 30 randomly selected-samples was compared using an ELISA detection technique. No sample was free from mycotoxin contamination, and 50.8 % of the samples were co-contaminated with all five mycotoxins. Moreover, toxin levels were generally high, with mean levels of 9 mg kg?1 FB1, 6 mg kg?1 FB2, 1.2 mg kg?1 DON, 0.9 mg kg?1 ZEN, and 0.35 mg kg?1 BEA. Maximum levels for FB1 (143 mg kg?1) and FB2 (125 mg kg?1) are of acute toxicological relevance. The ELISA method had a tendency to underestimate the fumonisin content when compared with LC-MS/MS. Finally, this is the first reported beauvericin contamination in corn-DDGS.  相似文献   

7.
The present study relates to the use of cyanobacterium Nostoc muscorum as a model system for removal of heavy metals such as Pb and Cd from aquatic systems. The effects of various physicochemical factors on the surface binding and intracellular uptake of Pb and Cd were studied to optimize the metal removal efficiency of the living cells of N. muscorum. Results demonstrated that a significant proportion of Pb and Cd removal was mediated by surface binding of metals (85 % Pb and 79 % Cd), rather than by intracellular accumulation (5 % Pb and 4 % Cd) at the optimum level of cyanobacterial biomass (2.8 g L?1), metal concentration (80 μg mL?1), pH (pH 5.0–6.0), time (15–30 min), and temperature (30–40 °C). N. muscorum has maximum amounts of metal removal (q max) capacity of 833 and 666.7 mg g?1 protein for Pb and Cd, respectively. The kinetic parameters of metal binding revealed that adsorption of Pb and Cd by N. muscorum followed pseudo-second-order kinetics, and the adsorption behavior was better explained by both Langmuir and Freundlich isotherm models. The surface binding of both the metals was apparently facilitated by the carboxylic, hydroxyl, and amino groups as evident from Fourier transform infrared spectra.  相似文献   

8.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

9.
Metals such as cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) were estimated in the flesh of the edible blue crab Callinectes amnicola from selected areas of the Lagos Lagoon, Nigeria (i.e., Makoko, Iddo, Okababa, Ikoyi, and Ajah) for 18 months between March 2011 and August 2012. Estimated average daily intake (EADI) and target hazard quotient (THQ) were used to determine the risk implications for adult and child consumer populations. Range of Cd, Pb, Zn, and Cu across sites was 0.16–0.46, 1.48–3.17, 2.21–3.65, and 9.48–12.76 mg kg?1 crab flesh wet weight, respectively. Lead concentrations in crab flesh from Makoko (3.16 ± 1.44 mg kg?1) and Iddo (5.17 ± 1.26 mg kg?1) exceeded the maximum accepted limits recommended by the Food and Agriculture Organization/World Health Organization for food fisheries. The EADI across sites for the adult consumer population exceeded the reference dose (RfD) recommended by the U.S. Environmental Protection Agency for most metals with magnitude of ≤7-fold while EADI of Pb among child consumer population across sites exceeded RfD by a maximum of 4.5-fold. THQs for adult population were >1 for all metals across all sites, and >1 for Pb and Cd for selected sites for the child consumer population. Findings from this study indicate higher health risks of metal toxicity to adult consumer populations, and risks of lead toxicity to child consumer populations around the Lagos Lagoon, Nigeria.  相似文献   

10.
The present study was conducted to assess the influence of dietary zinc nanoparticles (size 50 nm) on the growth, biochemical constituents, enzymatic antioxidant levels and the nonspecific immune response of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The concentrations of dietary supplement zinc nanoparticles (ZnNPs) were 0, 10, 20, 40, 60 and 80 mg kg?1 with the basal diet, and the level of Zn in ZnNP-supplemented diets were 0.71, 10.61, 20.73, 40.73, 60.61 and 80.60 mg kg?1, respectively. ZnNP-incorporated diets were fed to M. rosenbergii PL (initial body weight, 0.18?±?0.02 g) in a triplicate experimental setup for a period of 90 days. ZnNP supplemented feed fed PL up to 60 mg kg?1 showed significantly (P?<?0.05) improved performance in survival, growth and activities of digestive enzymes (protease, amylase and lipase). The concentrations of biochemical constituents (total protein, total amino acid, total carbohydrate and total lipid), total haemocyte count and differential haemocyte count were elevated in 10–60 mg kg?1 ZnNP supplemented feed fed PL. However, the PL fed with 80 mg ZnNPs kg?1 showed negative results. Activities of enzymatic antioxidants [superoxide dismutase (SOD) and catalase (CAT)], metabolic enzymes [glutamate–oxaloacetate transaminase (GOT) and glutamate–pyruvate transaminase (GPT)] and the process of lipid peroxidation (LPO) in the hepatopancreas and muscle showed no significant alterations in 10–60 mg kg?1 ZnNP supplemented feed fed PL. Whereas, 80 mg ZnNPs kg?1 supplemented feed fed PL showed significant elevations in SOD, CAT, LPO, GOT and GPT. Therefore, 80 mg ZnNPs kg?1 was found to be toxic to M. rosenbergii PL. Thus, the study suggests that up to 60 mg ZnNPs kg?1 can be supplemented for regulating survival, growth and immunity of M. rosenbergii.  相似文献   

11.
Samples of stored maize from villages located in five different agroecological zones (southern lowlands, northern lowlands, Senqu river valley, foothills and mountains) of Lesotho were collected in 2009/10 and 2010/11 and assessed for contamination with toxigenic fungi. The water activity of all samples collected during the two seasons was <0.70. The total fungal populations of the maize from different regions in the two seasons was not significantly different (p?>?0.05). Fusarium verticillioides, F. proliferatum and F. subglutinans predominated in different regions in both seasons based on molecular analyses. In the 2009/10 season, the isolates of these species all produced FB1, while in the 2010/11 season, very few produced FB1. A. flavus isolates (2009/10) were recovered from mountains and Senqu river valley samples while the 2010/11 isolates were predominantly from the foothills and northern lowlands. The mountain isolates of Aspergillus section Flavi produced the highest levels of AFB1 (20 mg kg?1). Aspergillus parasiticus was only isolated from the foothills, Senqu river valley and southern lowlands samples, and the AFB1 levels produced ranged from ‘none detected’ to 3.5 mg kg?1. The Aspergillus ochraceous isolates were least frequently encountered in both seasons. In the 2009/10 season, the isolates from the northern lowlands produced ochratoxin A (OTA) in culture. No isolates of A. niger from different regions in both seasons produced any OTA. Multi-mycotoxin analyses of the maize samples were done for a range of mycotoxins. At least one sample from each region in both seasons was FB1-positive. FB1 levels for 2010/11 samples (7–936 μg kg?1) were higher than in the 2009/10 season (2–3 μg kg?1). In both seasons, the mountains registered the highest levels of FB1. Deoxynivalenol (DON) was recovered from all the samples analysed, with the highest mean contamination of 1,469 μg kg?1 in samples from the northern lowlands. Moniliformin (MON) was detected from all agroecological zones in the two seasons (5–320 μg kg?1 in 2009/10; 15–1,205 μg kg?1 in 2010/11). Emerging toxins such as fusaproliferin (FUS) and beauvericin (BEA) were also detected. OTA was not detected in any of the samples analysed. Only one 2009/10 sample in the Senqu river valley was positive for AFB1. This is the first report on toxigenic fungi and multi-mycotoxin contamination of maize samples from subsistence farmers’ stores in different agroecological zones of Lesotho.  相似文献   

12.
The aim of this work was to investigate the effect of silicon (Si) on phenolic exudation of plant roots and cadmium (Cd) bioavailability in rhizospheres. For this purpose, pot experiments with two cypress varieties, Juniperus chinensis and Platycladus orientalis, each subjected to 100 mg kg?1 Cd and/or 400 mg kg?1 Si for 220 days, were conducted using a rhizobag technique. The results showed that P. orientalis accumulated a higher amount of Cd, hence caused higher growth inhibition on the leaves compared with J. chinensis. Si alleviated the growth inhibition induced by Cd toxicity on both varieties, but the mechanisms involved were species specific. For J. chinensis, Si did not affect the root exudation but enhanced the Cd retention of the roots by strengthening the exodermis tissues, restraining Cd translocation from the roots to the shoots. For P. orientalis, Si exposure significantly elevated the phenolic exudation (for example, ferulic acid, catechin, and gallic acid) of the roots, which caused greater Cd mobility in the rhizosphere and enhancement of Cd accumulation in the shoots compared with Cd treatment alone. These results suggest that Cd-chelating with the Si-induced phenolics in the rhizosphere is involved in the Cd detoxification in P. orientalis.  相似文献   

13.
In a hydroponic setting, we investigated the possible role of phytochelatins (metal-binding peptides) in the lead (Pb) tolerance of vetiver grass (Vetiveria zizanioides L.). Pb was added to the nutrient medium at concentrations ranging from 0 to 1,200 mg L?1. Furthermore, we simulated the effect of soil phosphorus (P) on potentially plant available Pb by culturing vetiver grass in P-rich nutrient media. After 7 days of exposure to Pb, we evaluated the Pb uptake by vetiver grass. Results indicate that vetiver can accumulate Pb up to 3,000 mg kg?1 dry weight in roots with no toxicity. Formation of lead phosphate inhibited Pb uptake by vetiver, suggesting the need for an environmentally safe chelating agent in conjunction with phytoremediation to clean up soils contaminated with lead-based paint. Unambiguous characterization of phytochelatins (PCn) was possible using high pressure liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESMS). Vetiver shows qualitative and quantitative differences in PCn synthesis between root and shoot. In root tissue from vetiver exposed to 1,200 mg Pb L-1, phytochelatins ranged from PC1 to PC3. Collision-induced dissociation of the parent ion allowed confirmation of each PCn based on the amino acid sequence. Possible Pb-PC1 and Pb2-PC1 complexes were reported in vetiver root at the highest Pb concentration. The data from these experiments show that the most probable mechanism for Pb detoxification in vetiver is by synthesizing PCn and forming Pb–PCn complexes.  相似文献   

14.
The main objectives of the present study were to investigate the levels of arsenic (As) in 23 vegetable species planted on As-polluted soil and assess the human health risks of contaminated vegetable consumption. The target hazard quotient (THQ) and target cancer risk (TR) methods were employed to evaluate the human health risks posed by exposure to As through vegetable consumption. Our results indicate substantial As contamination of the experimental soil. Significant differences were detected in the concentrations of total and inorganic As in the edible parts of the various vegetables grown on contaminated soil, which were generally in the following order: leafy vegetables > stem vegetables > root vegetables > melon and fruit vegetables. The total THQ value for As due to vegetable consumption for children (4.81) was higher than that for adults (3.66), the TR values for As due to vegetable ingestion for adults (1.65 × 10?3) and children (2.17 × 10?3) were significantly beyond the range of acceptable risk (10-6–10-4) recommended by the US Environmental Protection Agency and the maximum acceptable risk value (5.0 × 10?5) recommended by the International Commission on Radiation Protection, which clearly poses a dangerous health risk for residents consuming vegetables in the long-term in the study area.  相似文献   

15.
The concentrations of Pb and Cd, and trace elements (Cu and Zn) in the urban topsoil, rook (Corvus frugilegus) feces and feathers and human scalp hair were analyzed to examine the potential ecological risk posed by Pb and Cd on local residents of Qiqihar City, northeastern China. Results revealed that the Cd concentrations in the topsoil were ranged from 0.14 to 3.55 mg kg?1 dry weight (dw). The maximal geoaccumulation indices [a value from logarithmic (a measured metal content/1.5 × background content of the metal in this region), introduced by Muller] of Cd exceeded 3.5, which suggested that this region was seriously contaminated by Cd. The corresponding average detectable concentrations in C. frugilegus feathers and feces were 1.38 and 3.97 mg kg?1 dw for Pb and 1.04 and 0.69 mg kg?1 dw for Cd. High Pb and Cd concentrations, respectively, ranging from 7.46 to 24.9 mg kg?1 dw and from 0.35 to 0.92 mg kg?1 dw were also detected in the human scalp hair samples. These high Pb and Cd concentrations in C. frugilegus and local people were possibly associated with local industrial wastes and vehicle exhausts. The external tissues (feces and feather) of the rook species can be considered as an indicator of potential Cd toxic risk in this species; however, the human scalp hair is not a reliable biomarker for risk of Pb and Cd in the human being. Effective measures should be established to reduce the inputs of Pb and Cd into the urban environment and to protect the health of local people.  相似文献   

16.
A study quantifying the effects of different copper (Cu) concentrations (50, 200, 800 and 1,000 mg kg?1 Cu) on Cu bioaccumulation and physiological responses of Spartina alterniflora was conducted. Plant biomass and Cu accumulation were determined. Plant height, tiller number, chlorophyll, leaf electrolyte leakage rate (ELR), malondialdehyde (MDA), proline, soluble sugar, and organic acids were also measured. The results showed that S. alterniflora mainly accumulated Cu in fine roots. No significant changes of biomass of fine roots were detected except for obvious reduction under 1,000 mg kg?1 Cu. In leaves, rhizomes and fine roots, the highest Cu accumulations were detected under 800 mg kg?1 Cu. The highest Cu accumulation in stem was revealed under 200 mg kg?1 Cu. Plant height decreased under 1,000 mg kg?1 Cu; chlorophyll content reduced under >50 mg kg?1 Cu; levels of ELR and MDA increased under >200 mg kg?1 Cu. However, osmotic components such as proline and soluble sugar were accumulated to cope with higher Cu stresses (800 and 1,000 mg kg?1). Further, oxalic and citric acids were positively related with Cu contents in leaves and stems, suggesting that oxalic and citric acids may be related to Cu detoxification in aboveground parts of S. alterniflora. However, in above and belowground parts, no detoxification function of ascorbic and fumaric acids was observed due to unchanged or decreased trend under Cu stress.  相似文献   

17.
In recent years, due to the rise in food consumption, much of the attention has been focused to increase the yield of the agricultural crops which resulted in compromised nutritional quality. Efforts have to be undertaken to enhance the nutritional attributes of legumes, cereals and staple food crops by increasing amino acids and mineral content. In the present study, we evaluated a protoplast fusant (H. lixii MTCC 5659) for its ability to enhance nutritional value and defence activity in chickpea. Essential amino acids; methionine (9.82 mg kg?1 dw), cysteine (2.61 mg kg?1 dw), glycine (11.34 mg kg?1 dw), valine (9.26 mg kg?1 dw), and non-essential amino acids; aspartic acid (39.19 mg kg?1 dw) and serine (17.53 mg kg?1 dw) were significantly higher in seeds of fusant inoculated chickpea. Fusant significantly improved accumulation of mineral nutrients i.e. Cu (157.73 mg kg?1 dw), Co (0.06 mg kg?1 dw), Ni (1.85 mg kg?1 dw), Zn (157.73 mg kg?1 dw) and S (16.29 mg kg?1 dw) in seeds. Biocontrol and defence activities of chickpea increased from 20 to 35% in fusant inoculated plants suggesting its potential to ameliorate biotic stress. To the best of our knowledge, this is the first report of an increase in amino acids and mineral content of chickpea by fusant inoculation.  相似文献   

18.
This experiment was conducted to investigate the potential risk of toxic elements in paddy soils and rice straws, bran, and husked grains in Kuchesfahan, Gilan, Iran. The average content of total and DTPA-extractable of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 7.0, 26.3, 20728.8, 1516.7, 43.8, 16.6, and 211.8?mg kg?1, and 0.32, 14.1, 97.3, 63.4, 1.7, 4.8, and 56.2?mg kg?1, respectively. In addition, the average content of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in rice grain was 0.16, 2.4, 135.5, 34.1, 2.0, 0.6, and 15.0?mg kg?1, respectively. The average transfer factor for Cd, Cu, Fe, Mn, Ni, Pb, and Zn from soil to straw was 0.38, 0.16, 0.004, 0.13, 0.3, 0.04, and 0.09, respectively. The average values of estimated daily intake for Cd, Cu, Fe, Mn, Ni, Pb, and Zn through rice consumption for adult are respectively, estimated to be 0.0004, 0.005, 0.32, 0.08, 0.005, 0.0015, and 0.035?mg kg?1 body weight per day. There was no health risk index (HRI) values for adult greater than 1 (except three samples for Fe, and one sample for Mn and Cd); indicated that intake of single metal through the consumption of rice was safe. The average of heath index (HI) value for rice consumption was 0.33 and 0.35 for adult and children, respectively. Therefore, combination of several potentially toxic elements may not cause risk to local residents. Spatial distributions of HRI were obtained for potentially toxic metals in husked grains.  相似文献   

19.
Nostoc sp. BHU001, a planktonic cyanobacterium isolated from an agricultural pond in India, was examined for its toxicity. Mice, administered intraperitoneally with Nostoc sp. BHU001 crude extract (50 mg kg?1 body weight) died at 4.5 h. Examination of liver and spleen showed microcystin (MC)-like symptoms. Serum enzyme aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities increased by 1.6–1.8 and 2.6–3.0-folds, respectively at 50 and 100 mg crude extract kg?1 body weight. Thin layer chromatography of the crude extract produced five bands (N-1 to N-5). UV absorption maxima of band N-4 corresponded to that of standard microcystin-LR. Further analysis of the band N-4 by high-performance liquid chromatography gave a retention time (R t ) of 4.61 min similar to that of standard microcystin–LR (LR stands for lysine and arginine). Total MC content was quantified by enzyme-linked immunosorbent assay, and was 189.9 μg g?1 of crude extract, 9.8 μg l?1 of spent medium and 5.5 μg l?1 of pond water. Exposure of rice (Oryza sativa var. Sonam) seeds to the crude extract did not affect their germination, but inhibited the root and shoot growth of seedlings by 27.3 and 42.89 folds at 3 mg ml?1 crude extract, respectively.  相似文献   

20.
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号