首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of its high‐energy density, metal–selenides have demanded attention as a potential energy‐storage material. But they suffer from volume expansion, dissolved poly‐selenides and sluggish kinetics. Herein, utilizing' thermal selenization via the Kirkendall effect, microspheres of NiSe2 confined by carbon are successfully obtained from the self‐assembly of Ni‐precursor/PPy. The derived hierarchical hollow architecture increases the active defects for sodium storage, while the existing double N‐doped carbon layers significantly alleviate the volume swelling. As a result, it shows ultrafast rate capability, delivering a stable capacity of 374 mAh g?1, even after 3000 loops at 10.0 A g?1. These remarkable results may be ascribed to the Ni? O? C bonds on the interface of NiSe2 and the carbon film, which leads to the faster transfer of ions, the effective trapping of poly‐selenide, and the highly reversible conversion reaction. The kinetic analysis of cyclic voltammetry (CV) demonstrates that the electrochemical process is mainly dominated by pseudocapacitive behaviors. Supported by the results of electrochemical impedance spectroscopy (EIS), it is confirmed that the solid–electrolyte interface films are reversibly formed/decomposed during cycling. Given this, this elaborate work might open up a potential avenue for the rational design of metal‐sulfur/selenide anodes for advanced battery systems.  相似文献   

2.
A simple polyether‐tethered pyrrole‐polyamide dimer 1 was synthesized in 50% yield from the reaction of 2,2,2‐trichloro‐1‐(1‐methyl‐4‐nitro‐1H‐pyrrol‐2‐yl)ethanone with 2,2′‐[1,2‐ethanediylbis(oxy)]bisethanamine, and fully characterized on the basis of 1H‐ and 13C‐NMR, MS, HR‐MS, and IR data. Agarose gel‐electrophoresis study of the cleavage of plasmid pBR322 DNA by the complexes of compound 1 with seven metal ions indicated that most of the metal complexes were capable of efficiently cleaving DNA at pH 7.0 and 37°. Among them, the CuII complex exhibited the highest activity, with the maximal catalytic rate constant kmax and Michaelis constant KM being 5.61 h?1 and 7.30 mM , respectively. Spectroscopic, ESI‐MS, ethidium‐bromide (EB) displacement, and viscosity experiments indicated that compound 1 could form a 1 : 1 complex with CuII ion, and that this complex showed moderate binding affinity toward calf‐thymus DNA.  相似文献   

3.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

4.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

5.
Prostate cancer is one of the most common cancer forms among males of Western countries. Natural products proved to be an unparalleled source of molecular diversity. The 4‐(hydroxyphenylmethylidene)hydantoin (PMH; 1 ), (5Z)‐5‐(4‐hydroxybenzylidene)imidazolidine‐2,4‐dione, was isolated from the Red Sea sponge Hemimycale arabica, and recently showed junctional complexes stabilization, anti‐invasive, and antimetastatic activities in vitro and in vivo. The related synthetic analogue, (5Z)‐5‐[4‐(ethylsulfanyl)benzylidene]imidazolidine‐2,4‐dione ( 2 ), showed several‐fold‐improved in vivo antimetastatic properties against the highly invasive prostate cancer. To further optimize the activity of PMHs, various ligand‐based strategies were used including the extension of the structure, structural simplification, linker extension, and computer‐assisted CoMFA (Comparative Molecular Field Analysis) results. These strategies yielded thirty 2nd‐generation PMHs, designed based on the 1st‐generation PMHs, such as 1 and 2 . Wound‐healing assay was selected to evaluate the in vitro anti‐migratory potential of these new PMHs against the PC‐3 cell line. Several active PMHs, including 10, 13, 24, 29 , with nearly twelvefold enhancement of activity vs. 2 , were identified. Active compounds were then used to build a pharmacophore model using the SYBYL's DIStance COmparison technique (DISCOtech). Active PMHs were also screened for fragment‐based drug likeness using the OSIRIS program, and an overall drug score was also calculated. Interestingly, the overall drug scores of 24 and 29 along with their anti‐migratory activity were significantly greater than those of 1 and 2 . In conclusion, PMHs can be the appropriate scaffolds for the urgently needed drug candidates for the control of androgen independent prostate cancer.  相似文献   

6.
Kuzuhara A 《Biopolymers》2005,79(4):173-184
For the purpose of investigating in detail the influence of chemical modification using 2-iminothiolane hydrochloride (2-IT) on keratin fibers, the structure of cross-sections at various depths of white human hair, treated with 2-IT and then oxidized, was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. In particular, the beta-sheet and/or random coil content (beta/R) and the alpha-helix (alpha) content in human hair fibers were estimated by amide I band analysis. The S-S band intensity, amide III (unordered) band intensity, and beta/R content existing from the cuticle region to the center of cortex region of virgin white human hair remarkably increased by performing the chemical modification using 2-IT. On the other hand, not only the S-S band intensity, but also S-O band intensity existing throughout the cortex region of the bleached (damaged) white human hair increased by performing chemical modification using 2-IT. In particular, beta/R content existing throughout the cortex region of the bleached white human hair decreased, while the skeletal C-C stretch (alpha) band intensity at 935 cm(-1) and the alpha content remarkably increased. This indicates a secondary structural change from the random coil form to the alpha-helix form in the proteins existing throughout the cortex region. From these experiments, we concluded that the formation of new disulfide (-SS-) groups resulting from chemical modification using 2-IT induced the secondary structural changes of proteins existing throughout the cortex region.  相似文献   

7.
Organic–inorganic halide perovskites are efficient absorbers for solar cells. Nevertheless, the trap states at the surfaces and grain boundaries are a detrimental factor compromising the device performance. Here, an organic dye (AQ310) is employed as passivator to reduce the trap states of the perovskites and promote better stability. The results demonstrate that the trap states of perovskite are minimized by the presence of AQ310's ? COOH group and the formation of coordination with under‐coordinated Pb2+ ions. The resulting carrier recombination time is prolonged and verified by the photoluminescence and open‐circuit voltage decay measurements. Consequently, the best average power conversion efficiency (PCE) of 19.43% is achieved for the perovskite solar cell (PSC) with AQ310 passivation, as compared with a low average PCE of 17.98% for the PSC without AQ310 passivation.  相似文献   

8.
A one‐pot synthesis of new 4‐(1,3‐thiazolo[5,4‐b]pyridin‐2‐yl)benzene‐1,3‐diols has been described. The compounds were prepared by the reaction of sulfinylbis[(2,4‐dihydroxyphenyl)methanethione] derivatives, with various substituents in the aryl rings, with 2‐chloropyridin‐3‐amines. Their structures were deduced from IR and, 1H‐ and 13C‐NMR spectroscopic, mass spectrometric, and elemental analyses. The antiproliferative properties of some of the products against human cancer cell lines were comparable to those of cisplatin. Structure? activity analysis showed that the presence of hydrophobic substituents in both heterocyclic fused and phenyl rings of the compounds improves their biological effects. Further, an additional OH group in the resorcinol moiety reduced the antiproliferative activity.  相似文献   

9.
Synthetic peptides reproducing the helix‐loop‐helix (HLH) domains of the Id proteins fold into highly stable helix bundles upon self‐association. Recently, we have shown that the replacement of the dipeptide Val‐Ser at the loop–helix‐2 junction with the corresponding O‐acyl iso‐dipeptide leads to a completely unfolded state that only refolds after intramolecular ON acyl migration. Herein, we report on an Id HLH analog based on the substitution of the Pro‐Ser motif at the helix‐1–loop junction with the corresponding O‐acyl iso‐dipeptide. This analog has been successfully synthesized by solid‐phase Fmoc chemistry upon suppression of DKP formation. No secondary structure could be detected for the O‐acyl iso‐peptide before its conversion into the native form by ON acyl shift. These results show that the loop–helix junctions are determinant for the folded/unfolded state of the Id HLH domain. Further, despite the high risk of DKP formation, peptides containing O‐acyl iso‐Pro‐Ser/Thr units are synthetically accessible by Fmoc chemistry. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
In a study aiming to determine the structural elements essential to the antifungal activity of kakuol, we synthesized a series of 2‐hydroxy‐4,5‐methylenedioxyaryl ketones, and we assayed their in vitro antifungal activity. The most sensitive target organisms to the action of these class of compounds were Phytophthora infestans, Phytium ultimum, Cercospora beticola, Cladosporium cucumerinum, and Rhizoctonia solani. Most of the analogs showed a remarkable in vitro activity, and some of them appeared significantly more effective than the natural product. The biological activity was mainly affected by introducing structural modification on the carbonyl moiety of the natural‐product molecule. In particular, compound 5a , bearing a C?C bond conjugated to the C?O group, was found active with a MIC value of 10 μg ml?1 against Cladosporium cucumerinum. The results suggest that 2‐hydroxy‐4,5‐methylenedioxyaryl ketones can be considered promising candidates in the development of new antifungal compounds.  相似文献   

11.
The potential anti‐ or pro‐oxidative effects of a disease‐modifying antirheumatic drug, aurothiomalate, to protect high‐molar‐mass hyaluronan against radical degradation were investigated along with L ‐glutathione – tested in similar functions. Hyaluronan degradation was induced by the oxidative system CuII plus ascorbate known as the Weissberger's oxidative system. The time‐ and dose‐dependent changes of the dynamic viscosity of the hyaluronan solutions were studied by the method of rotational viscometry. Additionally, the antioxidative activity of aurothiomalate expressed as a radical‐scavenging capacity based on a decolorization 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) assay was inspected. At the higher concentrations tested, L ‐glutathione showed excellent scavenging of .OH and peroxyl‐type radicals, however, at the lowest concentration applied, its pro‐oxidative effect was revealed. The effects of aurothiomalate on hyaluronan degradation were similar to that of L ‐glutathione, however, at the lowest concentration tested, no significant pro‐oxidant effect was observed.  相似文献   

12.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   

13.
In the present article, we report on the kinetics of brain penetration in rats of the H3R antagonist 1,1′‐[1,1′‐biphenyl‐4,4′‐diylbis(methylene)]bis‐[piperidine] ( 1 ), which had shown a favorable in vitro pharmacological profile and in vivo potency in preventing scopolamine‐induced amnesia. Two different approaches were employed: high‐performance liquid chromatography/electrospray‐mass spectrometry (HPLC/ESI‐MS) and ex vivo binding against the labeled agonist [3H]‐(R)‐α‐methylhistamine ([3H]RAMHA). Starting from the structure of 1 , the rigid piperidine ring was replaced by a flexible dipropylamino group (see 2 ) or by a morpholino ring (see 3 ), endowed with lower basicity. The effect of replacement on rat plasma and brain disposition in the 24 h after administration was analyzed. High (μM ) and persistent concentrations of 1 were found in rat plasma, while plasma levels were significantly lower (range: 0–200 nM ) for the other two derivatives. This could be explained, among other factors, by the higher stability, observed for 1 , to liver metabolic cleavage. The applied chemical modulation had an important effect on in vivo brain disposition, as, despite the comparable physico‐chemical properties, 2 did not show the tendency to accumulate within the brain, as stated by its brain vs. plasma concentration ratios, if compared to 1 . These structure? property relationships should be taken into account in the pharmacokinetic optimization of new series of H3 receptor antagonists.  相似文献   

14.
15.
A novel strategy for a more efficient synthesis of difficult sequence‐containing peptides, the S‐acyl isopeptide method, was developed and successfully applied. A model pentapeptide Ac–Val–Val–Cys–Val–Val–NH2 was synthesized via its water‐soluble S‐acyl isopeptide using an S‐acyl isodipeptide unit, Boc–Cys(Fmoc–Val)–OH. An S‐acyl isopeptide possessing excellent water solubility could be readily and quantitatively converted to the native peptide via an SN intramolecular acyl migration reaction at pH 7.4. Thus, the S‐acyl isopeptide method provides a useful tool in peptide chemistry. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Benzoylformate decarboxylase (BFD) from Pseudomonas putida is a thiamine diphosphate‐dependent (ThDP) enzyme that catalyzes the asymmetric C? C bond formation to (S)‐2‐hydroxypropiophenone [(S)‐HPP] starting from benzaldehyde and acetaldehyde. The enantioselectivity of BFD was shown to be a function of temperature and substrate concentration. It can additionally be changed by site‐directed mutagenesis on hot spot positions in the active site. In this article, we present the effect of hydrostatic pressure up to 250 MPa on the enantioselectivity for the recombinant wtBFD as well as for the variants BFD F464I, BFD A460I, and BFD A460I‐F464I. A general tendency toward lower amounts of (S)‐HPP could be observed at increasing pressures. For two of these variants an increase in pressure even caused an inversion in the enantioselectivity and thus increasing enantiomeric excesses, respectively. A pressure‐induced increase in enantioselectivity could therefore be observed for the first time in biocatalysis to the best of our knowledge. Furthermore, the pH is shown to be a parameter that also significantly influences the enantioselectivity of the reaction mentioned above. Biotechnol. Bioeng. 2010; 106: 18–26. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Twenty new trichodermin derivatives, 2a – 5 , containing alkoxy, acyloxy, and Br groups in 4‐, 8‐, 9‐, 10‐ and 16‐positions were synthesized and characterized. The antifungal activities of the new compounds against rice false smut (Ustilaginoidea virens), rice sheath blight (Rhizoctonia solani), and rice blast (Magnaporthe grisea) were evaluated. The results of bioassays indicated that the antifungal activities were particularly susceptible to changes at 4‐, 8‐, and 16‐positions, but low to changes at 9‐ and 10‐positions. Most of these target compounds exhibited good antifungal activities at the concentration of 50 mg l?1. Compound 4 (9‐formyltrichodermin; EC50 0.80 mg l?1) with an CHO group at 9‐position displayed nearly the same level of antifungal activity against Ustilaginoidea virens as the commercial fungicide prochloraz (EC50 0.82 mg l?1), while compound 3f ((8R)‐8‐{[(E)‐3‐phenylprop‐2‐enoyl]oxy}trichodermin; EC50 3.58 and 0.74 mg l?1) with a cinnamyloxy group at C(8) exhibited much higher antifungal activities against Rhizoctonia solani and Magnaporthe grisea than the commercial fungicides prochloraz (EC50 0.96 mg l?1) and propiconazole (EC50 5.92 mg l?1), respectively. These data reveal that compounds 3f and 4 possess high antifungal activities and may serve as lead compounds for the development of fungicides in the future.  相似文献   

18.
Although the high energy density of Li? O2 chemistry is promising for vehicle electrification, the poor stability and parasitic reactions associated with carbon‐based cathodes and the insulating nature of discharge products limit their rechargeability and energy density. In this study, a cathode material consisting of α‐Fe2O3 nanoseeds and carbon nanotubes (CNT) is presented, which achieves excellent cycling stability on deep (dis)charge with high capacity. The initial capacity of Fe2O3/CNT electrode reaches 805 mA h g?1 (0.7 mA h cm?2) at 0.2 mA cm?2, while maintaining a capacity of 1098 mA h g?1 (0.95 mA h cm?2) after 50 cycles. The operando structural, spectroscopic, and morphological analysis on the evolution of Li2O2 indicates preferential Li2O2 growth on the Fe2O3. The similar dspacing of the (100) Li2O2 and (104) Fe2O3 planes suggest that the latter epitaxially induces Li2O2 nucleation. This results in larger Li2O2 primary crystallites and smaller secondary particles compared to that deposited on CNT, which enhances the reversibility of the Li2O2 formation and leads to more stable interfaces within the electrode. The mechanistic insights into dual‐functional materials that act both as stable host substrates and promote redox reactions in Li? O2 batteries represent new opportunities for optimizing the discharge product morphology, leading to high cycling stability and coulombic efficiency.  相似文献   

19.
A method of determining the water structure in protein crystals is described using neutron solvent difference maps. These maps are obtained by comparing the changes in diffracted intensities between two data sets, one in which H2O is the major solvent constituent, and a second in which D2O is the solvent medium. To a good first approximation, the protein atom contributions to the scattering intensities in both data sets are equal and cancel, but since H2O and D2O have very different neutron-scattering properties, their differences are accentuated to reveal an accurate representation of the solvent structure. The method also employs a series of density modification steps that impose known physical constraints on the density distribution function in the unit cell by making real space modifications directly to the density maps. Important attributes of the method are that (1) it is less subjective in the assignment of water positions than X-ray analysis; (2) there is threefold improvement in the signal-to-noise ratio for the solvent density; and (3) the iterative density modification produces a low-biased representation of the solvent density. Tests showed that water molecules with as low as 10% occupancy could be confidently assigned. About 300 water sites were assigned for trypsin from the refined solvent density; 140 of these sites were defined in the maps as discrete peaks, while the remaining were found within less-ordered channels of density. There is a very good correspondence between the sites in the primary hydration layer and waters found in the X-ray structure. Most water sites are clustered into H-bonding networks, many of which are found along intermolecular contact zones. The bound water is equally distributed between contacting apolar and polar atoms at the protein interface. A common occurrence at hydrophobic surfaces is that apolar atoms are circumvented by one or more waters that are part of a larger water network. When the effects on surface accessibility by neighboring molecules in the crystal lattice are taken into consideration, only about 29% of the surface does not interface ordered water. About 25% of the ordered water is found in the second hydration sphere. In many instances these waters bridge larger clusters of primary layer waters. It is apparent that, in certain regions of the crystal, the organization of ordered water reflects the characteristics of the crystal environment more than those of trypsin's surface alone.  相似文献   

20.
Receptor-ligand interaction models are generally based on a 'lock and key' concept. How far this holds true for olfactory receptors and odor molecules is currently uncertain. Here, we have investigated the response of a human olfactory receptor, OR1D2, to a broad array of odorants and found that there is no simple, direct correlation between a molecule's ability to activate this receptor and the odor impression elicited in the brain. In a parallel study on specific anosmia, we have found no evidence for odor-specific anosmia to either musk or amber, but rather to specific molecules within these categories. Cluster analysis confirmed that there is no simple correlation between molecular structure and impaired perception in either odor type. There are some differences in patterns of impairment between the two odor types and some evidence to suggest that subjects with specific anosmia to a given substance can identify its presence in a mixture. Taken together, our results show that simplistic 'lock and key' models of olfaction based on a concept of odor-quality-tuned receptors are inadequate, irrespective of the nature of the lock-key interaction. Receptor activation is only one step in a long chain of events leading from inhalation of odorants to perception of odor in the higher brain, and, therefore, although structure-odor correlations are useful tools for the design of novel odorants, caution should be exercised when extrapolating them to models of olfactory perception. Those seeking to understand the odorant-receptor interaction should use receptor activation rather than odor as input data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号