首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic–inorganic hybrid perovskite solar cells (PSCs) are a promising photovoltaic technology that has rapidly developed in recent years. Nevertheless, a large number of ionic defects within perovskite absorber can serve as non‐radiative recombination center to limit the performance of PSCs. Here, organic donor‐π‐acceptor (D‐π‐A) molecules with different electron density distributions are employed to efficiently passivate the defects in the perovskite films. The X‐ray photoelectron spectroscopy (XPS) analysis shows that the strong electron donating N,N‐dibutylaminophenyl unit in a molecule causes an increase in the electron density of the passivation site that is a carboxylate group, resulting in better binding with the defects of under‐coordinated Pb2+ cations. Carrier lifetime in the perovskite films measured by the time‐resolved photoluminescence spectrum is also prolonged by an increase in donation ability of the D‐π‐A molecules. As a consequence, these benefits contribute to an increase of 80 mV in the open circuit voltage of the devices, enabling a maximum power conversion efficiency (PCE) of 20.43%, in comparison with PCE of 18.52% for the control device. The authors' findings provide a novel strategy for efficient defect passivation in the perovskite solar cells based on controlling the electronic configuration of passivation molecules.  相似文献   

2.
Novel photovoltaic perovskite solar cells (PSCs) with high‐efficient photovoltaic property are largely in thrall to the uncertain perovskite grain size and inevitable defects. Here, inspired by the competitive growth between tree and grass in the forest system, a competitive perovskite grain growth approach via micro‐contact print (MicroCP) method (CD disk as templates) for printing wettability‐patterned substrate is proposed, aiming to achieve large‐grained perovskite and avoid discontinuous perovskite films caused by the low wettability of substrates. A MicroCP process is employed to construct a patterned wettability surface for the perovskite competitive growth mechanism on the electrode surface. This approach modifies the substrates quickly, ensures the uniform coverage of perovskite due to the function of ‐NH2 and Pb2+ bonds, and converts the perovskite films composed of small grains and pinholes into high‐quality perovskite films, free from pinholes and made up of large grains, resulting in efficiencies over 20% for the MicroCP PSCs.  相似文献   

3.
Developing efficient narrow bandgap Pb–Sn hybrid perovskite solar cells with high Sn‐content is crucial for perovskite‐based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb‐based analogs, controlling the formation of Sn‐containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb–Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb–Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb–Sn hybrid perovskite films. Using a two‐step deposition method, homogeneous crystallization of mixed Pb–Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA0.66MA0.34Pb0.5Sn0.5I3 perovskite absorber exhibit the highest efficiency among mixed Pb–Sn perovskites and feature a relatively low dark carrier density compared to Sn‐rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution‐processed narrow bandgap perovskite solar cells with 50% Sn‐content.  相似文献   

4.
The performance of perovskite solar cells is sensitive to detrimental defects, which are prone to accumulate at the interfaces and grain boundaries of bulk perovskite films. Defect passivation at each region will lead to reduced trap density and thus less nonradiative recombination loss. However, it is challenging to passivate defects at both the grain boundaries and the bottom charge transport layer/perovskite interface, mainly due to the solvent incompatibility and complexity in perovskite formation. Here SnO2‐KCl composite electron transport layer (ETL) is utilized in planar perovskite solar cells to simultaneously passivate the defects at the ETL/perovskite interface and the grain boundaries of perovskite film. The K and Cl ions at the ETL/perovskite interface passivate the ETL/perovskite contact. Meanwhile, K ions from the ETL can diffuse through the perovskite film and passivate the grain boundaries. An enhancement of open‐circuit voltage from 1.077 to 1.137 V and a corresponding power conversion efficiency increasing from 20.2% to 22.2% are achieved for the devices using SnO2‐KCl composite ETL. The composite ETL strategy reported herein provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells.  相似文献   

5.
In the past years, hybrid perovskite materials have attracted great attention due to their superior optoelectronic properties. In this study, the authors report the utilization of cobalt (Co2+) to partially substitute lead (Pb2+) for developing novel hybrid perovskite materials, CH3NH3Pb1‐xCoxI3 (where x is nominal ratio, x = 0, 0.1, 0.2 and 0.4). It is found that the novel perovskite thin films possess a cubic crystal structure with superior thin film morphology and larger grain size, which is significantly different from pristine thin film, which possesses the tetragonal crystal structure, with smaller grain size. Moreover, it is found that the 3d orbital of Co2+ ensures higher electron mobilities and electrical conductivities of the CH3NH3Pb1‐xCoxI3 thin films than those of pristine CH3NH3Pb4 thin film. As a result, a power conversion efficiency of 21.43% is observed from perovskite solar cells fabricated by the CH3NH3Pb0.9Co0.1I3 thin film. Thus, the utilization of Co, partially substituting for Pb to tune physical properties of hybrid perovskite materials provides a facile way to boost device performance of perovskite solar cells.  相似文献   

6.
Planar perovskite solar cells obtained by low‐temperature solution processing are of great promise, given a high compatibility with flexible substrates and perovskite‐based tandem devices, whilst benefitting from relatively simple manufacturing methods. However, ionic defects at surfaces usually cause detrimental carrier recombination, which links to one of dominant losses in device performance, slow transient responses, and notorious hysteresis. Here, it is shown that several different types of ionic defects can be simultaneously passivated by simple inorganic binary alkaline halide salts with their cations and anions. Compared to previous literature reports, this work demonstrates a promising passivation technology for perovskite solar cells. The efficient defect passivation significantly suppresses the recombination at the SnO2/perovskite interface, contributing to an increase in the open‐circuit voltage, the fast response of steady‐state efficiency, and the elimination of hysteresis. By this strong leveraging of multiple‐element passivation, low‐temperature‐processed, planar‐structured perovskite solar cells of 20.5% efficiencies, having negligible hysteresis, are obtained. Moreover, this defect‐passivation enhances the stability of solar cells with efficiency beyond 20%, retaining 90% of their initial performance after 30 d. This approach aims at developing the concept of defect engineering, which can be expanded to multiple‐element passivation from monoelement counterparts using simple and low‐cost inorganic materials.  相似文献   

7.
Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13 perovskite has a narrower bandgap, less distorted inorganic framework, and larger Pb? I? Pb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13 films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13 cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.  相似文献   

8.
Organic–inorganic perovskite photovoltaics are an emerging solar technology. Developing materials and processing techniques that can be implemented in large‐scale manufacturing is extremely important for realizing the potential of commercialization. Here we report a hot‐casting process with controlled Cl? incorporation which enables high stability and high power‐conversion‐efficiencies (PCEs) of 18.2% for small area (0.09 cm2) and 15.4% for large‐area (≈1 cm2) single solar cells. The enhanced performance versus tri‐iodide perovskites can be ascribed to longer carrier diffusion lengths, improved uniformity of the perovskite film morphology, favorable perovskite crystallite orientation, a halide concentration gradient in the perovskite film, and reduced recombination by introducing Cl?. Additionally, Cl? improves the device stability by passivating the reaction between I? and the silver electrode. High‐quality thin films deployed over a large‐area 5 cm × 5 cm eight‐cell module have been fabricated and exhibit an active‐area PCE of 12.0%. The feasibility of material and processing strategies in industrial large‐scale coating techniques is then shown by demonstrating a “dip‐coating” process which shows promise for large throughput production of perovskite solar modules.  相似文献   

9.
Organic–inorganic halide perovskite solar cells (PSCs) have emerged as attractive alternatives to conventional solar cells. It is still a challenge to obtain PSCs with good thermal stability and high permanence, especially at extreme outdoor temperatures. This work systematically studies the effects of Bi3+ modification on structural, electrical, and optical properties of perovskite films (FA0.83MA0.17Pb(I0.83Br0.17)3) and the performance of corresponding PSCs. The results indicate that Bi3+ modified PSCs can achieve better thermal stability, photovoltaic response, and reproducibility compared with control cells due to the decreased grain boundaries, enhanced crystallization, and improved electron extraction from perovskite film. As a result, the modified PSC exhibits an optimized power conversion efficiency (PCE) of 19.4% compared with 18.3% for the optimized control device, accompanied by better thermoresistant ability under 100–180 °C and enhanced long‐term stability. The degradation rate of the modified device is reduced by an order of magnitude due to effective structural defect modification in perovskite photoactive layer. It could maintain more than two months at 60 °C. These results shed light on the origin of crystallization and thermal stability of perovskite films, and provide an approach to solve thermal stability issue of PSCs.  相似文献   

10.
Interfacial engineering, grain boundary, and surface passivation in organic–inorganic hybrid perovskite solar cells (HyPSCs) are effective in achieving high performance and enhanced durability. Organic additives and inorganic doping are generally used to chemically modify the surface contacting charge transport layers, and/or grain boundaries so as to reduce the defect density. Here, a simple but tricky one‐step method to dope organic–inorganic hybrid perovskite with Ge for the first time is reported. Unlike Ge doping to all‐inorganic perovskites, application of GeI2 in organic–inorganic perovskite precursors is challenging due to the extremely poor solubility of GeI2 in hybrid perovskite ink, leading to failure in the formation of uniform films. However, it is found that addition of methylammonium chloride (MACl) into the precursor remarkably increases the solubility of GeI2. This MACl‐assisted Ge doping of hybrid perovskites produces high‐quality crystalline film with its surface passivated with nonvolatile GeI2 (GeO2) and the volatile MACl additive also improves the uniformity of GeO2 distribution in the perovskite films. The resulting Ge‐doped mixed cation and mixed halide perovskite films with composition FA0.83MA0.17Ge0.03Pb0.97(I0.9Br0.1)3 show superior photoluminescence lifetime, power conversion efficiency above 22%, and greater stability toward illumination and humidity, outperforming photovoltaic properties of HyPSCs prepared without the Ge doping.  相似文献   

11.
All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm2.  相似文献   

12.
Perovskite materials are good candidates for flexible photovoltaic applications due to their strong absorption and low‐temperature processing, but efficient flexible perovskite modules have not yet been realized. Here, a record efficiency flexible perovskite solar module is demonstrated by blade coating high‐quality perovskite films on flexible Corning Willow Glass using additive engineering. Ammonium chloride (NH4Cl) is added into the perovskite precursor solution to retard the nucleation which prevents voids formation at the interface of perovskite and glass. The addition of NH4Cl also suppresses the formation of PbI2 and reduces the trap density in the perovskite films. The implementation of NH4Cl enables the fabrication of single junction flexible perovskite solar devices with an efficiency of 19.72% on small‐area cells and a record aperture efficiency of 15.86% on modules with an area of 42.9 cm2. This work provides a simple way to scale up high‐efficiency flexible perovskite modules for various applications.  相似文献   

13.
The low power conversion efficiency (PCE) of tin‐based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn‐based HPSCs. Herein, this study reports on the successful reduction of the background carrier density by more than one order of magnitude by depositing near‐single‐crystalline formamidinium tin iodide (FASnI3) films with the orthorhombic a‐axis in the out‐of‐plane direction. Using these highly crystalline films, obtained by mixing a very small amount (0.08 m ) of layered (2D) Sn perovskite with 0.92 m (3D) FASnI3, for the first time a PCE as high as 9.0% in a planar p–i–n device structure is achieved. These devices display negligible hysteresis and light soaking, as they benefit from very low trap‐assisted recombination, low shunt losses, and more efficient charge collection. This represents a 50% improvement in PCE compared to the best reference cell based on a pure FASnI3 film using SnF2 as a reducing agent. Moreover, the 2D/3D‐based HPSCs show considerable improved stability due to the enhanced robustness of the perovskite film compared to the reference cell.  相似文献   

14.
The influence of monovalent cation halide additives on the optical, excitonic, and electrical properties of CH3NH3PbI3 perovskite is reported. Monovalent cation halide with similar ionic radii to Pb2+, including Cu+, Na+, and Ag+, have been added to explore the possibility of doping. Significant reduction of sub‐bandgap optical absorption and lower energetic disorder along with a shift in the Fermi level of the perovskite in the presence of these cations has been observed. The bulk hole mobility of the additive‐based perovskites as estimated using the space charge limited current method exhibits an increase of up to an order of magnitude compared to the pristine perovskites with a significant decrease in the activation energy. Consequentially, enhancement in the photovoltaic parameters of additive‐based solar cells is achieved. An increase in open circuit voltage for AgI (≈1.02 vs 0.95 V for the pristine) and photocurrent density for NaI‐ and CuBr‐based solar cells (≈23 vs 21 mA cm?2 for the pristine) has been observed. This enhanced photovoltaic performance can be attributed to the formation of uniform and continuous perovskite film, better conversion, and loading of perovskite, as well as the enhancement in the bulk charge transport along with a minimization of disorder, pointing towards possible surface passivation.  相似文献   

15.
2D Ruddlesden–Popper (RP) perovskites have recently emerged as promising candidates for hybrid perovskite photovoltaic cells, realizing power‐conversion efficiencies (PCEs) of over 10% with technologically relevant stability. To achieve solar cell performance comparable to the state‐of‐the‐art 3D perovskite cells, it is highly desirable to increase the conductivity and lower the optical bandgap for enhanced near‐IR region absorption by increasing the perovskite slab thickness. Here, the use of the 2D higher member (n = 5) RP perovskite (n‐butyl‐NH3)2(MeNH3)4Pb5I16 in depositing highly oriented thin films from dimethylformamide/dimethylsulfoxide mixtures using the hot‐casting method is reported. In addition, they exhibit superior environmental stability over thin films of their 3D counterpart. These films are assembled into high‐efficiency solar cells with an open‐circuit voltage of ≈1 V and PCE of up to 10%. This is achieved by fine‐tuning the solvent ratio, crystal growth orientation, and grain size in the thin films. The enhanced performance of the optimized devices is ascribed to the growth of micrometer‐sized grains as opposed to more typically obtained nanometer grain size and highly crystalline, densely packed microstructures with the majority of the inorganic slabs preferentially aligned out of plane to the substrate, as confirmed by X‐ray diffraction and grazing‐incidence wide‐angle X‐ray scattering mapping.  相似文献   

16.
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.  相似文献   

17.
Remarkable power conversion efficiencies (PCE) of metal–halide perovskite solar cells (PSCs) are overshadowed by concerns about their ultimate stability, which is arguably the prime obstacle to commercialization of this promising technology. Herein, the problem is addressed by introducing ethane‐1,2‐diammonium (+NH3(CH2)2NH3+, EDA2+) cations into the methyl ammonium (CH3NH3+, MA+) lead iodide perovskite, which enables, inter alia, systematic tuning of the morphology, electronic structure, light absorption, and photoluminescence properties of the perovskite films. Incorporation of <5 mol% EDA2+ induces strain in the perovskite crystal structure with no new phase formed. With 0.8 mol% EDA2+, PCE of the MAPbI3‐based PSCs (aperture of 0.16 cm2) improves from 16.7% ± 0.6% to 17.9% ± 0.4% under 1 sun irradiation, and fabrication of larger area devices (aperture 1.04 cm2) with a certified PCE of 15.2% ± 0.5% is demonstrated. Most importantly, EDA2+/MA+‐based solar cells retain 75% of the initial performance after 72 h of continuous operation at 50% relative humidity and 50 °C under 1 sun illumination, whereas the MAPbI3 devices degrade by approximately 90% within only 15 h. This substantial improvement in stability is attributed to the steric and coulombic interactions of embedded EDA2+ in the perovskite structure.  相似文献   

18.
Scaling large‐area solar cells is in high demand for the commercialization of perovskite solar cells (PSCs) with a high power‐conversion efficiency (PCE). However, few roll‐to‐roll‐compatible deposition methods for the formation of highly oriented uniform perovskite films are reported. Herein, a facile cold antisolvent bathing approach compatible with large‐area fabrication is introduced. The wet precursor films are submerged in a cold antisolvent bath at 0 °C, and the retarded nucleation and growth kinetics allow highly oriented perovskite to be grown along the [110] and [220] directions, perpendicular to the substrate. The high degree of the preferred crystal orientation benefits the effective charge extraction and reduces the amount of inter‐ and intra‐grain defects inside the perovskite films, improving the PCE from 16.48% (ambient‐bathed solar cell) to 18.50% (cold‐bathed counterpart). The cold antisolvent bathing method is employed for the fabrication of large‐area (8 × 10 cm2) PSCs with uniform photovoltaic device parameters, thereby verifying the scale‐up capability of the method.  相似文献   

19.
Organic–inorganic halide perovskites are efficient absorbers for solar cells. Nevertheless, the trap states at the surfaces and grain boundaries are a detrimental factor compromising the device performance. Here, an organic dye (AQ310) is employed as passivator to reduce the trap states of the perovskites and promote better stability. The results demonstrate that the trap states of perovskite are minimized by the presence of AQ310's ?COOH group and the formation of coordination with under‐coordinated Pb2+ ions. The resulting carrier recombination time is prolonged and verified by the photoluminescence and open‐circuit voltage decay measurements. Consequently, the best average power conversion efficiency (PCE) of 19.43% is achieved for the perovskite solar cell (PSC) with AQ310 passivation, as compared with a low average PCE of 17.98% for the PSC without AQ310 passivation.  相似文献   

20.
Achieving light harvesting is crucial for the efficiency of the solar cell. Constructing optical structures often can benefit from micro‐nanophotonic imprinting. Here, a simple and facile strategy is developed to introduce a large area grating structure into the perovskite‐active layer of a solar cell by utilizing commercial optical discs (CD‐R and DVD‐R) and achieve high photovoltaic performance. The constructed diffraction grating on the perovskite active layer realizes nanophotonic light trapping by diffraction and effectively suppresses carrier recombination. Compared to the pristine perovskite solar cells (PSCs), the diffraction‐grating perovskite devices with DVD obtain higher power conversion efficiency and photocurrent density, which are improved from 16.71% and 21.67 mA cm?2 to 19.71% and 23.11 mA cm?2. Moreover, the stability of the PSCs with diffraction‐grating‐structured perovskite active layer is greatly enhanced. The method can boost photonics merge into the remarkable perovskite materials for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号