首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.  相似文献   

9.
10.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

11.
12.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

13.
14.
Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI? anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI? anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future.  相似文献   

15.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

16.
Lithium‐sulfur batteries (LSBs) have been regarded as a competitive candidate for next‐generation electrochemical energy‐storage technologies due to their merits in energy density. The sluggish redox kinetics of the electrochemistry and the high solubility of polysulfides during cycling result in insufficient sulfur utilization, severe polarization, and poor cyclic stability. Herein, sulfiphilic few‐layered MoSe2 nanoflakes decorated rGO (MoSe2@rGO) hybrid has been synthesized through a facile hydrothermal method and for the first time, is used as a conceptually new‐style sulfur host for LSBs. Specifically, MoSe2@rGO not only strongly interacts with polysulfides but also dynamically strengthens polysulfide redox reactions. The polarization problem is effectively alleviated by relying on the sulfiphilic MoSe2. Moreover, MoSe2@rGO is demonstrated to be beneficial for the fast nucleation and uniform deposition of Li2S, contributing to the high discharge capacity and good cyclic stability. A high initial capacity of 1608 mAh g?1 at 0.1 C, a slow decay rate of 0.042% per loop at 0.25 C, and a high reversible capacity of 870 mAh g?1 with areal sulfur loading of 4.2 mg cm?2 at 0.3 C are obtained. The concept of introducing sulfiphilic transition‐metal selenides into the LSBs system can stimulate engineering of novel architectures with enhanced properties for various energy‐storage devices.  相似文献   

17.
18.
19.
20.
One of the most challenging problems in the development of lithium–sulfur batteries is polysulfide dissolution, which leads to cell overcharge and low columbic efficiency. Here, we propose the formation of a thin conformal Li‐ion permeable oxide layer on the sulfur‐carbon composite electrode surface by rapid plasma enhanced atomic layer deposition (PEALD) in order to prevent this dissolution, while preserving electrical connectivity within the individual electrode particles. PEALD synthesis offers a fast deposition rate combined with a low operating temperature, which allows sulfur evaporation during deposition to be avoided. After PEALD of a thin layer of aluminium oxide on the surface of electrode composed of large (ca. 10 μm in diameter) S‐infiltrated activated carbon fibers (S‐ACF), significantly enhanced cycle life is observed, with a capacity in excess of 600 mA·h·g?1 after 300 charge–discharge cycles. Scanning electron microscopy (SEM) shows a significant amount of redeposited lithium sulfides on the external surface of regular S‐ACF electrodes. However, the PEALD alumina‐coated electrodes show no lithium sulfide deposits on the fiber surface. Energy dispersive spectroscopy (EDS) studies of the electrodes’ chemical composition further confirms that PEALD alumina coatings dramatically reduce S dissolution from the cathodes by confining the polysulfides inside the alumina barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号