首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on root growth, root antioxidant capacity, and cellular ultrastructure were investigated using two wucai genotypes (heat-tolerant WS-1 and heat-sensitive WS-6) under heat stress (40/30 °C) for 5 days. Heat stress caused decreases in root biomass, relative water content (RWC), root vigor, and root traits of two wucai genotypes. In addition, it resulted in reactive oxygen species (ROS) accumulation and increased hydrogen peroxide (H2O2) content, superoxide anion (O2 ?) formation rate, and malondialdehyde (MDA) content, but the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were inhibited to different extents in two genotype wucai roots. However, these data indicated that the decline extent of WS-1 (heat tolerant) in root growth and antioxidant capacity was significantly lower than that of WS-6 (Heat sensitive). Microscopic analyses revealed that WS-1 (heat tolerant) showed a better cellular shape than WS-6 under heat stress and slightly oxidative damage; nuclear and mitochondria in WS-1 were of a better intact shape and clear bilayer membrane. Most importantly, the thicker root cell wall in heat-tolerant wucai genotype responding to heat stress was first reported. These results suggested that the ability of heat-tolerant wucai genotype to minimize the heat stress depended upon the higher self-regulation capacity and effectiveness of the antioxidant metabolism.  相似文献   

2.
3.
4.
The Mehler–Ascorbate–Peroxidase cycle is a protection system against reactive oxygen species (ROS) occurring during over-excitation of the photosynthetic apparatus. In the cultivated tomato, Lycopersicon esculentum, long-term chilling under moderate light leads to oxidation of the Calvin cycle key enzyme, ribulose-1,5-bisphosphate carboxylase (rubisco), presumably by generation of ROS. In contrast, high-altitude lines of the wild tomato species L. peruvianum were tolerant against the same chilling stress. In the present study, we analysed leaf contents of antioxidants (ascorbate, glutathione) and activities of enzymes of the Mehler–Ascorbate–Peroxidase cycle in the two Lycopersicon species. While antioxidant levels and activities of chloroplast superoxide dismutase (SOD) and ascorbate peroxidase (APX), both inducible by chilling stress, were similar in chilling-tolerant and chilling-sensitive genotypes, chilled L. esculentum showed lower glutathione reductase (GR) activities than high-altitude L. peruvianum. We constructed transgenic plants overexpressing an Escherichia coli GR in the chloroplast (approximately 60-fold of the wild-type (WT) activity). However, these plants resembled identical chilling sensitivity of the photosynthetic apparatus as WT plants as measured after a photoinhibition treatment and by the effect of long-term chilling on rubisco activity. We conclude that the Mehler–Ascorbate–Peroxidase cycle is not the limiting factor for the sensitivity of the photosynthetic apparatus of L. esculentum towards long-term chilling under moderate light. We suggest that a possible cause for the higher chilling tolerance of L. peruvianum is prevention of ROS formation by better conversion of light energy to photochemistry at suboptimal temperatures.  相似文献   

5.
6.
The responses of antioxidative system of rice to chilling were investigated in a tolerant cultivar, Xiangnuo-1, and a susceptible cultivar, IR-50. The electrolyte leakage and malondialdehyde content of Xiangnuo-1 were little affected by chilling treatment but those of IR-50 increased. Activities of suoperoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and ascorbic acid content of Xiangnuo-1 were remained high, while those of IR-50 decreased under chilling. The results indicated that higher activities of defense enzymes and higher content of antioxidant under stress were associated with tolerance to chilling.  相似文献   

7.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

8.
9.
The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.  相似文献   

10.
Chen W  Yang X  He Z  Feng Y  Hu F 《Physiologia plantarum》2008,132(1):89-101
The relationship of zinc (Zn) efficiency in rice to differential tolerance of photosynthetic capacity and chloroplast function to low Zn stress was studied using Zn-efficient (IR8192) and Zn-inefficient (Erjiufeng) rice genotypes ( Oryza sativa L.). Zinc deficiency caused extensive declines in leaf chlorophyll (Chl) content, ratios of chl a:b, Pn, Fv/Fm and Fv/Fo, indicating that the intrinsic quantum efficiency of the photosystem II (PSII) units was damaged. A greater decline was observed in the inefficient genotype (Erjiufeng) than the efficient genotype (IR8192). The 77 K chl fluorescence emission spectrum revealed that Zn deficiency blocked energy spillover from PSII to PSI and more excitation energy was distributed to PSII in IR8192 than Erjiufeng. The spectrum of Zn-deficient Erjiufeng was completely disordered, implying that the photosynthetic centers were seriously damaged. Electron microscopy showed that Zn deficiency caused a severe damage to the fine structure of chloroplasts, but IR8192 had a better preserved chloroplast ultrastructure as compared with Erjiufeng. These differences may result from the higher levels of the antioxidant enzyme activities and lower oxidant stress level in IR8192. These results indicate that Zn deficiency decreases leaf photosynthetic capacity primarily by reducing the number of PSII units per unit leaf area, and also reducing the photochemical capacity of the remaining PSII units. Therefore, the maintenance of more efficient photochemical capacity under low Zn stress is a key factor for the high Zn efficiency in rice, which may result from less antioxidant damage caused by low Zn to the chloroplast ultrastructure.  相似文献   

11.
12.
以欧美107杨(Populus×euramericana ‘Neva',Wt)和转拟南芥液泡膜Na~+/H~+逆向转运蛋白基因AtNHX1的欧美107杨新品系(Tr) 幼苗为材料,研究了高低度盐胁迫对两品系幼苗光合色素含量、光合参数和叶绿体超微结构的影响,以阐明转AtNHX1基因杨树的耐盐性与其光合作用及叶绿体结构之间的关系.结果表明:(1)盐处理后,两品系叶片叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率和气孔导度均下降,且高盐度处理下降幅度更大;同等盐度处理下,Tr品系叶片叶绿素含量、净光合速率和气孔导度的下降幅度显著低于Wt品系,且在高盐度处理间差异更大;两品系杨树叶片P_n下降的原因在低盐处理时以气孔限制为主,而在高盐下则是气孔限制和非气孔限制共同作用的结果.(2)盐胁迫对T_r 品系叶片叶绿体超微结构的影响较轻,其在高盐下仍保持了较好的内部结构;盐胁迫Wt品系叶绿体则缩皱成球形,内部结构趋向简单,以至解体,脂质球显著增多.可见,盐胁迫导致杨树叶绿体结构破坏而引起叶绿体色素含量下降,最终降低其光合作用效率;同等盐度胁迫下,转AtNHX1基因品系叶片保持了较完整的叶绿体超微结构、更高的叶绿素含量,能维持较好的光合状态,从而表现出较高的耐盐能力.  相似文献   

13.
在0、100、300、500和700 mmol·L-1NaCl胁迫条件下比较了喷施0.1mmol·L-1亚精胺(Spd)对毕氏海蓬子(Salicomia bigelovii Torr.)幼苗叶绿素含量、净光合速率、气孔导度、胞间CO2浓度和叶绿体超微结构的影响.结果表明:毕氏海蓬子的叶绿素含量、净光合速率和气孔导度均呈低浓度条件下(0、100和300 mmol·L-1NaCl)升高、高浓度条件下(500和700 mmol·L-1NaCl)降低的趋势,在300 mmol·L-1 NaCl胁迫条件下达到最高值:胞间CO2浓度则呈低浓度NaCl胁迫条件下降低、500 mmol·L-1NaCl条件下升高、700 mmol·L-1NaCl条件下略降低的趋势;在0~500 mmol·L-1NaCl胁迫条件下叶绿素a/b值变化不明显,但在700 mmol·L-1NaCl条件下急剧降低.在低浓度NaCl胁迫条件下,叶绿体整体膨胀,类囊体片层结构松散,但叶绿体和类囊体结构仍保持完整;而经500和700mmol·L-1NaCl处理后,叶绿体超微结构被严重破坏,叶绿体膜结构破裂、类囊体结构松散呈放射状、有些叶绿体完全解体.而在相应的NaCl胁迫条件下喷施0.1 mmol·L-1Spd,毕氏海蓬子的叶绿素含量、净光合速率、气孔导度和胞间CO2浓度虽然也呈现出相同的变化趋势,但其数值均显著高于对照(未喷施Spd);且叶绿体超微结构的损伤程度也轻于对照.研究结果说明:喷施外源Spd能够减缓NaCl胁迫对毕氏海蓬子的伤害作用.  相似文献   

14.
In order to investigate the function of chloroplast ascorbate peroxidase under temperature stress, the thylakoid-bound ascorbate peroxidase gene from tomato leaf (TtAPX) was introduced into tobacco. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that TtAPX in tomato was induced by chilling or heat stress. Over-expression of TtAPX in tobacco improved seed germination under temperature stress. Two transgenic tobacco lines showed higher ascorbate peroxidase activity, accumulated less hydrogen peroxide and malondialdehyde than wild type plants under stress condition. The photochemical efficiency of photosystem 2 in the transgenic lines was distinctly higher than that of wild type plants under chilling and heat stresses. Results indicated that the over-expression of TtAPX enhanced tolerance to temperature stress in transgenic tobacco plants.  相似文献   

15.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

16.
Despite being a key enzyme of Cavin cycle, transketolase (TK) is believed to be related to abiotic resistance in higher plants. However, how TK affects chilling tolerance still remains largely unknown. Here, we describe the effect of overexpression of the Cucumis sativa TK gene (CsTK) on growth, photosynthesis, ROS metabolism and cell ultrastructure under chilling stress. Low temperature led to a decrease of the photosynthetic rate (Pn), the stomatal conductance (Gs), the actual photochemical efficiency (ΦPSII) and the sucrose content, whereas there was an increase of the intercellular CO2 concentration (Ci) and MDA content. These changes were alleviated in the CsTK plants after 5 days of chilling stress, however, inhibition of CsTK showed the opposite results. Furthermore, transgenic plants with overexpression of CsTK showed higher increase in leaf area and dry matter, higher activity of the enzymes and higher increase in the contents of metabolism substance involved in Calvin cycle and reactive oxygen scavenging system as well as lower ?OH and H2O2 content, superoxide anion production rate compared with the control cucumber plants under chilling stress. At the end of the chilling stress, compared to wild‐type (WT) which exhibited dramatically destroyed cell ultrastructure, expanded chloroplast, broken cell and chloroplast membranes as well as the disappeared grana lamella, the CsTK sense plants showed a more complete cell ultrastructure, whereas, the damage of the cell ultrastructure was aggravated in CsTK antisense plants. Taken together, these results imply that CsTK promoted chilling tolerance in cucumber plants mainly through increasing the capacity to assimilate carbon, alleviating oxidative damage and stabilizing cell structure.  相似文献   

17.
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.  相似文献   

18.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

19.
Prasad TK 《Plant physiology》1997,114(4):1369-1376
The mechanisms of chilling acclimation and the role of antioxidant enzymes, catalase in particular, in inducing chilling tolerance in pre-emergent maize (Zea mays L.) seedlings have been investigated. Seedlings were acclimated to chilling stress in two different ways. Three-day-old seedlings did not survive 7 d of 4[deg]C stress unless acclimated by exposure to either 14[deg]C for 1 d or 4[deg]C for 1 d followed by recovery at 27[deg]C for 1 d. Although no changes in superoxide dismutase and ascorbate peroxidase activities were observed, both kinds of acclimated seedlings had higher catalase (CAT), glutathione reductase, and guaiacol peroxidase activities compared with nonacclimated seedlings during low-temperature stress and recovery conditions. To study the role of CAT in chilling tolerance, aminotriazole (AT) was used as a tool to artificially inhibit CAT activity and to initiate oxidative stress in the seedlings. Treatment of acclimating seedlings with 3 mM AT for 18 h abolished the acclimation phenomenon. AT treatment was found to be specific to CAT inhibition, because the total activities or isozyme profiles of the other investigated antioxidant enzymes were not altered in AT-treated seedlings. Protein carbonyl content, an indication of oxidative damage, was increased 2-fold in nonacclimated and AT-treated acclimated seedlings. These results collectively indicate that acclimation to prolonged chilling stress can be achieved by briefly pre-exposing the seedlings to 4[deg]C chilling stress and that acclimation-induced (oxidative stress-induced) CAT seems to play a major role, probably along with other antioxidant enzymes, in inducing chilling tolerance in pre-emergent maize seedlings.  相似文献   

20.
This experiment was conducted to test the effects of foliar application of progesterone on the photochemical efficiency of photosystem II (PSII) and photosynthetic rate in wheat flag leaves subjected to cross-stress of heat and high light during grain-filling stage. The results showed that progesterone pretreatment increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the contents of ascorbic acid and glutathione under the cross-stress. Meanwhile, the rate of O2 ? production, hydrogen peroxide (H2O2) and malondialdehyde contents in progesterone pretreated leaves were significantly lower under heat and high light stress. In parallel with the alleviation of oxidative stress, higher content of D1 protein in PSII reactive center was observed in progesterone pretreated leaves, resulting in a significant increase in the potential (Fv/Fm) and actual (ΦPS II) photochemical efficiency of PSII, and the net photosynthetic rate. In summary, this study suggested that foliar application of progesterone might protect the PSII complex from heat and high light stress-induced damage through enhancing antioxidant defense system and further facilitating D1 protein stability in the wheat leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号