首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

2.
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm?1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.  相似文献   

3.
Secondary batteries based on metal anodes (e.g., Li, Na, Mg, Zn, and Al) are among the most sought‐after candidates for next‐generation mobile and stationary storage systems because they are able to store a larger amount of energy per unit mass or volume. However, unstable electrodeposition and uncontrolled interfacial reactions occuring in liquid electrolytes cause unsatisfying cell performance and potential safety concerns for the commercial application of these metal anodes. Solid‐state electrolytes (SSEs) having a higher modulus are considered capable of inhibiting difficulties associated with the anodes and may enable building of safe all‐solid‐state metal batteries, yet several challenges, such as insufficient room‐temperature ionic conductivity and poor interfacial stability between the electrode and the electrolyte, hinder the large‐scale development of such batteries. Here, research and development of SSEs including inorganic ceramics, organic solid polymers, and organic–inorganic hybrid/composite materials for metal‐based batteries are reviewed. The comparison of different types of electrolytes is discussed in detail, in the context of electrochemical energy storage applications. Then, the focus of this study is on recent advances in a range of attractive and innovative battery chemistries and technologies that are enabled by SSEs. Finally, the challenges and future perspectives are outlined to foresee the development of SSEs.  相似文献   

4.
Layered lithium nickel oxide (LiNiO2) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi0.94Co0.06O2), capable of reaching a 235 mA h g?1 specific capacity. Pouch‐type graphite|LiNi0.94Co0.06O2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.  相似文献   

5.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

6.
Developing high‐voltage Mg‐compatible electrolytes (>3.0 V vs Mg) still remains to be the biggest R&D challenge in the area of nonaqueous rechargeable Mg batteries. Here, the key design concepts toward exploring new boron‐based Mg salts in a specific way of highlighting the implications of anions are proposed for the first time. The well‐defined boron‐centered anion‐based magnesium electrolyte (BCM electrolyte) is successfully presented by facile one‐step mixing of tris(2H‐hexafluoroisopropyl) borate and MgF2 in 1,2‐dimethoxyethane, in which the structures of anions have been thoroughly investigated via mass spectrometry accompanied by NMR and Raman spectra. The first all‐round practical BCM electrolyte fulfills all requirements of easy synthesis, high ionic conductivity, wide potential window (3.5 V vs Mg), compatibility with electrophilic sulfur, and simultaneously noncorrosivity to coin cell assemblies. When utilizing the BCM electrolyte, the fast‐kinetics selenium/carbon (Se/C) cathode achieves the best rate capability and the sulfur/carbon (S/C) cathode exhibits an impressive prolonged cycle life than previously published reports. The BCM electrolyte offers the most promising avenue to eliminate the major roadblocks on the way to high‐voltage Mg batteries and the design concepts can shed light on future exploration directions toward high‐voltage Mg‐compatible electrolytes.  相似文献   

7.
Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs.  相似文献   

8.
Rechargeable Li–S batteries are regarded as one of the most promising next‐generation energy‐storage systems. However, the inevitable formation of Li dendrites and the shuttle effect of lithium polysulfides significantly weakens electrochemical performance, preventing its practical application. Herein, a new class of localized high‐concentration electrolyte (LHCE) enabled by adding inert fluoroalkyl ether of 1H,1H,5H‐octafluoropentyl‐1,1,2,2‐tetrafluoroethyl ether into highly‐concentrated electrolytes (HCE) lithium bis(fluorosulfonyl) imide/dimethoxyether (DME) system is reported to suppress Li dendrite formation and minimize the solubility of the high‐order polysulfides in electrolytes, thus reducing the amount of electrolyte in cells. Such a unique LHCE can achieve a high coulombic efficiency of Li plating/stripping up to 99.3% and completely suppressing the shuttling effect, thus maintaining a S cathode capacity of 775 mAh g?1 for 150 cycles with a lean electrolyte of 4.56 g A?1 h?1. The LHCE reduces the solubility of lithium polysulfides, allowing the Li/S cell to achieve super performance in a lean electrolyte. This conception of using inert diluents in a highly concentrated electrolyte can accelerate commercialization of Li–S battery technology.  相似文献   

9.
Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI? anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI? anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future.  相似文献   

10.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

11.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

12.
13.
A 3D polymer‐network‐membrane (3D‐PNM) electrolyte is described for highly stable, solid‐state dye‐sensitized solar cells (DSCs) with excellent power‐conversion efficiency (PCE). The 3D‐PNM electrolyte is prepared by using one‐pot in situ cross‐linking polymerization on the surface of dye‐sensitized TiO2 particles in the presence of redox species. This method allows the direct connection of the 3D‐PNM to the surface of the TiO2 particles as well as the in situ preparation of the electrolyte gel during device assembly. There are two junction areas (liquid and solid‐state junctions) in the DSCs that employ conventional polymer electrolytes, and the major interface is at the liquid‐state junction. The solid‐state junction is dominant in the DSCs that employ the 3D‐PNM electrolyte, which exhibit almost constant performance during aging at 65 °C for over 700 h (17.0 to 17.2 mA cm–2). The best cell performance gives a PCE of 9.1%; this is slightly better than the performance of a DSC that employs a liquid electrolyte.  相似文献   

14.
Ionogels composed of ionic liquids and gelling solid matrices offer several advantages as solid‐state electrolytes for rechargeable batteries, including safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. Among gelling solid matrices, nanoscale materials have shown particular promise due to their ability to concurrently enhance ionogel mechanical properties, thermal stability, ionic conductivity, and electrochemical stability. These beneficial attributes suggest that ionogel electrolytes are not only of interest for incumbent lithium‐ion batteries but also for next‐generation rechargeable battery technologies. Herein, recent advances in nanocomposite ionogel electrolytes are discussed to highlight their advantages as solid‐state electrolytes for rechargeable batteries. By exploring a range of different nanoscale gelling solid matrices, relationships between nanoscale material structure and ionogel properties are developed. Furthermore, key research challenges are delineated to help guide and accelerate the incorporation of nanocomposite ionogel electrolytes in high‐performance solid‐state rechargeable batteries.  相似文献   

15.
Based on cation/anion graphite intercalation chemistry (GIC) processes, dual‐graphite batteries promise to be an energy storage device of high safety and low cost. However, few single electrolyte systems can simultaneously meet the requirements of both high oxidative stability during high voltage anion‐GIC on cathode and high reversibility upon cation‐GIC on anode. Thus, in order to rigidly remedy the irreversible capacity loss, excessive electrode materials need to be fabricated within full cell, resulting in an imbalance toward capacity‐dependent mass loading proportion between both electrodes. This work introduces a hybrid (dual‐organic) electrolytes design strategy into this promising technology. Segregated by a Nafion‐based separator, an ionic liquid electrolyte within the cathodic side can endure high operation potentials, while high Li‐GIC reversibility can be achieved in a superconcentrated ether‐based electrolyte on the anode side. On a mechanistic level, various cation‐GIC processes conducted in different electrolyte systems are clearly revealed and are summarized based on systematical characterizations. More importantly, after synergistically tuning the advantage and drawback of each electrolyte in this hybrid system, the dual‐graphite full cell assembled with capacity‐equivalent graphite‐based electrodes (1:1 mass loading) demonstrates superior long‐term cycling stability with ultrahigh capacity retention for over 3000 cycles.  相似文献   

16.
17.
All‐solid‐state sodium metal batteries (SSMBs) are of great interest for their high theoretical capacity, nonflammability, and relatively low cost owing partially to the abundance of sodium recourses. However, it is challenging to fabricate SSMBs because compared with their counterparts, which contain lithium metal, sodium metal is mechanically softer and more reactive toward the electrolyte. Herein, the synthesis and electrochemical properties of newly designed sodium‐containing hybrid network solid polymer electrolytes (SPEs) and their application in SSMBs are reported. The hybrid network is synthesized by controlled crosslinking of octakis(3‐glycidyloxypropyldimethylsiloxy)octasilsesquioxane and amine‐terminated polyethylene glycol in existence with sodium perchlorate (NaClO4). Plating and stripping experiments using symmetric cells show prolonged cycle life of the SPEs, >5150 and 3550 h at current density of 0.1 and 0.5 mA cm?2, respectively. The results for the first time show that the SPE|sodium metal interface migrates into the SPE phase upon cycling. SSMBs fabricated with the hybrid SPE sandwiched between sodium metal anode and bilayered δ‐NaxV2O5 cathode exhibit record‐high specific capacity for solid sodium‐ion batteries of 305 mAh g?1 and excellent Coulombic efficiency. This work demonstrates that the hybrid network SPEs are promising for SSMB applications.  相似文献   

18.
19.
Na super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm?1, σtotal = 2.4 mS cm?1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit?1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号