首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.  相似文献   

3.
4.
5.
6.
7.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

8.
In this study, we report results of the detection and analysis of SSR markers derived of cacao–Moniliophthora perniciosa expressed sequence tags (ESTs) in relation to cacao resistance to witches’ broom disease (WBD), and we compare the polymorphism of those ESTs (EST-simple sequence repeat (SSR)) with classical neutral SSR markers. A total of 3,487 ESTs was used in this investigation. SSRs were identified in 430 sequences: 277 from the resistant genotype TSH 1188 and 153 from the susceptible one Catongo, totalizing 505 EST-SSRs with three types of motifs: dinucleotides (72.1%), trinucleotides (27.3%), and tetranucleotides (0.6%). EST-SSRs were classified into 16 main categories; most of the EST-SSRs belonged to “Unknown function” and “No homology” categories (45.82%). A high frequency of SSRs was found in the 5’UTR and in the ORF (about 27%) and a low frequency was observed in the 3’UTR (about 8%). Forty-nine EST-SSR primers were designed and evaluated in 21 cacao accessions, 12 revealed polymorphism, having 47 alleles in total, with an average of 3.92 alleles per locus. On the other hand, the 11 genomic SSR markers revealed a total of 47 alleles, with an average of 5.22 alleles per locus. The association of EST-SSR with the genomic SSR enhanced the analysis of genetic distance among the genotypes. Among the 12 polymorphic EST-SSR markers, two were mapped on the F2 Sca 6 × ICS 1 population reference for WBD resistance.  相似文献   

9.
MicroRNAs (miRNAs) are 21–25-nucleotide-long, noncoding RNAs that are involved in translational regulation. Most miRNAs derive from a two-step sequential processing: the generation of pre-miRNA from pri-miRNA by the Drosha/DGCR8 complex in the nucleus, and the generation of mature miRNAs from pre-miRNAs by the Dicer/TRBP complex in the cytoplasm. Sequence variation around the processing sites, and sequence variations in the mature miRNA, especially the seed sequence, may have profound affects on miRNA biogenesis and function. In the context of analyzing the roles of miRNAs in Schizophrenia and Autism, we defined at least 24 human X-linked miRNA variants. Functional assays were developed and performed on these variants. In this study we investigate the affects of single nucleotide polymorphisms (SNPs) on the generation of mature miRNAs and their function, and report that naturally occurring SNPs can impair or enhance miRNA processing as well as alter the sites of processing. Since miRNAs are small functional units, single base changes in both the precursor elements as well as the mature miRNA sequence may drive the evolution of new microRNAs by altering their biological function. Finally, the miRNAs examined in this study are X-linked, suggesting that the mutant alleles could be determinants in the etiology of diseases.  相似文献   

10.
Papaya has a relatively small genome, displays high levels of phenotypic diversity, and is amenable to transformation, making it attractive as a fruit tree model system. The high level of phenotypic diversity seen among papaya cultivars in the field does not correlate with the low levels of genotypic polymorphism thus far elucidated. The highly mutable nature of microsatellites or simple sequence repeats (SSRs) make them potentially powerful markers for distinguishing deoxyribonucleic acid (DNA) polymorphisms between closely related genotypes. Genomic research for papaya has resulted in a significant quantity of sequence data. We mined 28.1 Mb of bacterial artificial chromosomes end sequences, 5.8 Mb of complementary DNA, and 1.6 Mb of random genomic sequences for SSRs. We generated 938 SSR markers and tested for polymorphism among seven varieties that had been used to produce five mapping populations. The level of polymorphism was highest for Kaek Dum × 2H94 with 210 markers, followed by UH928 × SunUp with 194, AU9 × SunUp with 189, UH918 × SunUp with 177, and Kapoho × SunUp displaying the lowest level with 97. Variation in levels of polymorphism, motif predominance, and motif length between the genomic and genic fractions indicated differential selection pressures acting on the microsatellites in these two fractions. The microsatellites developed in this study will greatly assist in the genetic and physical mapping of the papaya genome as well as enhance breeders’ ability to improve the crop. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The increasing availability of expressed sequence tags (ESTs) in wheat (Triticum aestivum) and related cereals provides a valuable resource of non-anonymous DNA molecular markers. We examined 170,746 wheat ESTs from the public (International Triticeae EST Cooperative) and Génoplante databases, previously clustered in contigs, for the presence of di- to hexanucleotide simple sequence repeats (SSRs). Analysis of 46,510 contigs identified 3,530 SSRs, which represented 7.5% of the total number of contigs. Only 74% of the sequences allowed primer pairs to be designed, 70% led to an amplification product, mainly of a high quality (68%), and 53% exhibited polymorphism for at least one cultivar among the eight tested. Even though dinucleotide SSRs were less represented than trinucleotide SSRs (15.5% versus 66.5%, respectively), the former showed a much higher polymorphism level (83% versus 46%). The effect of the number and type of repeats is also discussed. The development of new EST-SSRs markers will have important implications for the genetic analysis and exploitation of the genetic resources of wheat and related species and will provide a more direct estimate of functional diversity.  相似文献   

12.
13.
14.
15.
We have developed an approach to identify microRNAs (miRNAs) that is based on bioinformatics and array-based technologies, without the use of cDNA cloning. The approach, designed for use on genomes of small size (<2 Mb), was tested on cells infected by either of two lymphotropic herpesviruses, KSHV and EBV. The viral genomes were scanned computationally for pre-miRNAs using an algorithm (VMir) we have developed. Candidate hairpins suggested by this analysis were then synthesized as oligonucleotides on microarrays, and the arrays were hybridized with small RNAs from infected cells. Candidate miRNAs that scored positive on the arrays were then subjected to confirmatory Northern blot analysis. Using this approach, 10 of the known KSHV pre-miRNAs were identified, as well as a novel pre-miRNA that had earlier escaped detection. This method also led to the identification of seven new EBV-encoded pre-miRNAs; by using additional computational approaches, we identified a total of 18 new EBV pre-miRNAs that produce 22 mature miRNA molecules, thereby more than quadrupling the total number of hitherto known EBV miRNAs. The advantages and limitations of the approach are discussed.  相似文献   

16.
17.
The dependence of expression of miRNAs and their precursors (pre-miRNAs) on the DNA methylation level in HeLa cells 8 days after mitomycin C treatment was studied. A massive parallel DNA sequencing method was applied to analyze miRNA expression. 5-Azacytidine (DNA methylation inhibitor) was added to the medium 6 days after mutagenic agent exposure. The results indicated that the change in expression for some mature miRNAs (39 of 61) was accompanied by the change in the expression of their pre-miRNAs, while there were no significant changes in the expression of pre-miRNA for other mature miRNAs (22 of 61). The aberrant expression was maintained by 8 of 61 mature miRNAs and 6 of 55 pre-miRNAs in the induced HeLa cells after 5-azacytidine treatment. In addition, the expression of more than 90% of miRNAs, which indicated a significant change in expression after mitomycin C treatment, does not depend or depends slightly on the DNA methylation level in HeLa cells without mitomycin C treatment. The results suggest that mitomycin C induces aberrant DNA methylation which affects maintenance of changes in the miRNA expression in cell generations after mutagen treatment.  相似文献   

18.
Meng F  Hackenberg M  Li Z  Yan J  Chen T 《PloS one》2012,7(3):e34394
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary, 9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-throughput technologies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号