首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transition metal layered oxides have been the dominant cathodes in lithium‐ion batteries, and among them, high‐Ni ones (LiNixMnyCozO2; x ≥ 0.7) with greatly boosted capacity and reduced cost are of particular interest for large‐scale applications. The high Ni loading, on the other hand, raises the critical issues of surface instability and poor rate performance. The rational design of synthesis leading to layered LiNi0.7Mn0.15Co0.15O2 with greatly enhanced rate capability is demonstrated, by implementing a quenching process alternative to the general slow cooling. In situ synchrotron X‐ray diffraction, coupled with surface analysis, is applied to studies of the synthesis process, revealing cooling‐induced surface reconstruction involving Li2CO3 accumulation, formation of a Li‐deficient layer and Ni reduction at the particle surface. The reconstruction process occurs predominantly at high temperatures (above 350 °C) and is highly cooling‐rate dependent, implying that surface reconstruction can be suppressed through synthetic control, i.e., quenching to improve the surface stability and rate performance of the synthesized materials. These findings may provide guidance to rational synthesis of high‐Ni cathode materials.  相似文献   

3.
4.
Multiple applications of lithium‐ion batteries in energy storage systems and electric vehicles require highly stable electrode materials for long‐term battery operation. Among the various cathode materials, high‐Ni cathode materials enable a high energy density. However, cathode degradation accompanied by complex chemical and structural changes results in capacity and voltage fading in batteries. Cathode degradation remains poorly understood; the majority of studies have only explored the oxidation states of transition‐metal ions in localized areas and have rarely evaluated chemical degradation in complete particles after prolonged cycling. This study systematically investigates the degradation of a high‐Ni cathode by comparing the chemical, structural, and electrical changes in pristine and 500 times‐cycled cathodes. Electron probe micro‐analysis and X‐ray energy dispersive spectroscopy reveal changes in the Ni:O ratio from 1:2 to 1:1 over a large area inside the secondary particle. Electron energy loss spectroscopy analysis related to structural changes is performed for the entire primary particle area to visualize the oxidation state of transition‐metal ions in two dimensions. The results imply that the observed monotonic capacity fade without unusual changes is due to the continuous formation of the Ni2+ phase from the surface to the bulk through chemical and structural degradation.  相似文献   

5.
Li‐excess 3d‐transition metal layered oxides are promising candidates in high‐energy‐density cathode materials for improving the mileage of electric vehicles. However, their low rate capability has hindered their practical application. The lack of understanding about the redox reactions and migration behavior at high C‐rates make it difficult to design Li‐excess materials with high rate capability. In this study, the characteristics of the atomic behavior that is predominant at fast charge/discharge are investigated by comparing cation‐ordered and cation‐disordered materials using X‐ray absorption spectroscopy (XAS). The difference in the atomic arrangement determines the dominance of the transition metal/oxygen redox reaction and the variations in transition metal–oxygen hybridization. In‐depth electrochemical analysis is combined with operando XAS analysis to reveal electronically and structurally preferred atomic behavior when a redox reaction occurs between oxygen and each transition metal under fast charge/discharge conditions. This provides a fundamental insight into the improvement of rate capability. Furthermore, this work provides guidance for identifying high‐energy‐density materials with complex structural properties.  相似文献   

6.
7.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

8.
Spinel‐layered composites, where a high‐voltage spinel is incorporated in a layered lithium‐rich (Li‐rich) cathode material with a nominal composition x{0.6Li2MnO3 · 0.4[LiCo0.333Mn0.333Ni0.333]O2} · (1 – x) Li[Ni0.5Mn1.5]O4 (x = 0, 0.3, 0.5, 0.7, 1) are synthesized via a hydroxide assisted coprecipitation route to generate high‐energy, high‐power cathode materials for Li‐ion batteries. X‐ray diffraction patterns and the cyclic voltammetry investigations confirm the presence of both the parent components in the composites. The electrochemical investigations performed within a wide potential window show an increased structural stability of the spinel component when incorporated into the composite environment. All the composite materials exhibit initial discharge capacities >200 mAh g–1. The compositions with x = 0.5 and 0.7 show excellent cycling stability among the investigated materials. Moreover, the first cycle Coulombic efficiency achieve a dramatic improvement with the incorporation of the spinel component. More notably, the composite materials with increased spinel component exhibit superior rate capability compared with the parent Li‐rich material especially together with the highest capacity retention for x = 0.5 composition, making this as the optimal high‐energy high‐power material. The mechanisms involved in the symbiotic relationship of the spinel and layered Li‐rich components in the above composites are discussed.  相似文献   

9.
10.
11.
Ni‐rich layered oxides and Li‐rich layered oxides are topics of much research interest as cathodes for Li‐ion batteries due to their low cost and higher discharge capacities compared to those of LiCoO2 and LiMn2O4. However, Ni‐rich layered oxides have several pitfalls, including difficulty in synthesizing a well‐ordered material with all Ni3+ ions, poor cyclability, moisture sensitivity, a thermal runaway reaction, and formation of a harmful surface layer caused by side reactions with the electrolyte. Recent efforts towards Ni‐rich layered oxides have centered on optimizing the composition and processing conditions to obtain controlled bulk and surface compositions to overcome the capacity fade. Li‐rich layered oxides also have negative aspects, including oxygen loss from the lattice during first charge, a large first cycle irreversible capacity loss, poor rate capability, side reactions with the electrolyte, low tap density, and voltage decay during extended cycling. Recent work on Li‐rich layered oxides has focused on understanding the surface and bulk structures and eliminating the undesirable properties. Followed by a brief introduction, an account of recent developments on the understanding and performance gains of Ni‐rich and Li‐rich layered oxide cathodes is provided, along with future research directions.  相似文献   

12.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

13.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

14.
15.
The increasing demand for replacing conventional fossil fuels with clean energy or economical and sustainable energy storage drives better battery research today. Sodium‐ion batteries (SIBs) are considered as a promising alternative for grid‐scale storage applications due to their similar “rocking‐chair” sodium storage mechanism to lithium‐ion batteries, the natural abundance, and the low cost of Na resources. Searching for appropriate electrode materials with acceptable electrochemical performance is the key point for development of SIBs. Layered transition metal oxides represent one of the most fascinating electrode materials owing to their superior specific capacity, environmental benignity, and facile synthesis. However, three major challenges (irreversible phase transition, storage instability, and insufficient battery performance) are known for cathodes in SIBs. Herein, a comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure–function–property relationship to design improved battery materials. Layered oxides will be a competitive and attractive choice as cathodes for SIBs in next‐generation energy storage devices.  相似文献   

16.
17.
The high‐energy‐density, Li‐rich layered materials, i.e., xLiMO2(1‐x)Li2MnO3, are promising candidate cathode materials for electric energy storage in plug‐in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). The relatively low rate capability is one of the major problems that need to be resolved for these materials. To gain insight into the key factors that limit the rate capability, in situ X‐ray absorption spectroscopy (XAS) and X‐ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni0.375Co0.25 Mn0.375)O2·0.5Li2MnO3], are carried out. The partial capacity contributed by different structural components and transition metal elements is elucidated and correlated with local structure changes. The characteristic reaction kinetics for each element are identified using a novel time‐resolved XAS technique. Direct experimental evidence is obtained showing that Mn sites have much poorer reaction kinetics both before and after the initial activation of Li2MnO3, compared to Ni and Co. These results indicate that Li2MnO3 may be the key component that limits the rate capability of Li‐rich layered materials and provide guidance for designing Li‐rich layered materials with the desired balance of energy density and rate capability for different applications.  相似文献   

18.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

19.
Ni‐rich layered oxides (LiNi1–x Mx O2; M = Co, Mn, …) are appealing alternatives to conventional LiCoO2 as cathodes in Li‐ion batteries for automobile and other large‐scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1–x Mx O2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co‐substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni‐rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co‐rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g?1 ) with excellent retention. The findings shed light on designing high performance Ni‐rich layered oxide cathodes through synthetic control of the structural ordering in the materials.  相似文献   

20.
In an attempt to overcome the problems associated with LiNiO2, the solid solution series of lithium nickel‐metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, Al, Ti, Mg, etc.), have been investigated as favorable cathode materials for high‐energy and high‐power lithium‐ion batteries. However, along with the improvement in the electrochemical properties in Ni‐based cathode materials, the thermal stability has been a great concern, and thus violent reaction of the cathode with the electrolyte needs to be avoided. Here, we report a heterostructured Li[Ni0.54Co0.12Mn0.34]O2 cathode material which possesses both high energy and safety. The core of the particle is Li[Ni0.54Co0.12Mn0.34]O2 with a layered phase (R3‐m) and the shell, with a thickness of < 0.5 μm, is a highly stable Li1+x[CoNixMn2–x]2O4 spinel phase (Fd‐3m). The material demonstrates reversible capacity of 200 mAhg‐1 and retains 95% capacity retention under the most severe test condition of 60 °C. In addition, the amount of oxygen evolution from the lattice in the cathode with two heterostructures is reduced by 70%, compared to the reference sample. All these results suggest that the bulk Li[Ni0.54Co0.12Mn0.34]O2 consisting of two heterostructures satisfy the requirements for hybrid electric vehicles, power tools, and mobile electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号