首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relationship between the mitogen‐activated protein kinase response, nuclear factor‐κB (NFκB) expression and the apoptosis in human acute promyelocytic leukaemia NB4 cells treated with vinblastine was investigated in this work. Cell viability, subdiploid DNA and cell cycle were analysed by propidium iodide permeability and flow cytometry analyses. Apoptosis was determined by annexin V‐Fluorescein isothiocyanate assays. Western‐blot analysis was used for determination of expression levels of apoptotic factors (p53, Bax and Bcl2), intracellular kinases [serine/threonine‐specific protein kinase, extracellular signal‐regulated kinase and c‐Jun N‐terminal kinase (JNK)], NFκB factor and caspases. Electrophoretic mobility shift assay was usefully applied to study DNA‐NFκB interaction. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment had an antiproliferative effect via the induction of apoptosis producing Bax/Bcl‐2 imbalance. Vinblastine treatment suppressed NFκB expression and depressed NFκB‐DNA binding activity while maintaining JNK activation that subsequently resulted in apoptotic response through caspase‐dependent pathway. Our study provides a possible anti‐cancer mechanism of vinblastine action on NB4 cells by deregulation of the intracellular signalling cascade affecting to JNK activation and NFκB expression. Moreover, JNK activation and NFκB depression can be very significant factors in apoptosis induction by vinblastine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Inhibitor of apoptosis proteins (IAPs) are extensively involved in NFκB signaling pathways. Regulation of c-IAP2 turnover by other proteins was investigated in glioblastoma multiforme (GBM) cells in the present study. When overexpressed, X-linked IAP (XIAP) enhanced expression of ectopic c-IAP2, but not c-IAP1, and endogenous c-IAP2 levels were reduced once XIAP expression was silenced. TNFα stimulation substantially increased c-IAP2 expression, and this upregulation was impaired by suppression of XIAP. Similarly, when XIAP was limiting due to severe hypoxic conditions, c-IAP2 levels were downregulated. These data together indicate that XIAP is an important regulator responsible for stabilization of c-IAP2 levels under different conditions. Protein interactions occur through binding of BIR2 and BIR3 domains of c-IAP2 with the RING finger of XIAP. XIAP inhibition of c-IAP2 auto-degradation was dependent on this physical interaction, and it was independent of XIAP E3 ligase activity. Global c-IAP2 ubiquitination was not affected by XIAP, although c-IAP2 levels were significantly increased. A CARD-RING-containing fragment of c-IAP2 was found to target XIAP for proteasome-independent degradation, but it was unable to sensitize GBM cells to chemo-reagents. The XIAP-stabilized c-IAP2 was found to enhance IκB-α phosphorylation on serines 32 and 36, and to antagonize XIAP-induced increase in mature Smac and Bcl10. Taken together, our data identify a distinctive role of c-IAP2 as stabilizer of XIAP, which is likely involved in regulation of NFκB activation and apoptosis in GBM cells.  相似文献   

4.
The ASPP proteins are apoptosis regulators: ASPP1 and ASPP2 promote, while iASPP inhibits, apoptosis. The mechanism by which these different outcomes are achieved is still unknown. The C‐terminal ankyrin repeats and SH3 domain (ANK‐SH3) mediate the interactions of the ASPP proteins with major apoptosis regulators such as p53, Bcl‐2, and NFκB. The structure of the complex between ASPP2ANK‐SH3 and the core domain of p53 (p53CD) was previously determined. We have recently characterized the individual interactions of ASPP2ANK‐SH3 with Bcl‐2 and NFκB, as well as a regulatory intramolecular interaction with the proline rich domain of ASPP2. Here we compared the ASPP interactions at two levels: ASPP2ANK‐SH3 with different proteins, and different ASPP family members with each protein partner. We found that the binding sites of ASPP2 to p53CD, Bcl‐2, and NFκB are different, yet lie on the same face of ASPP2ANK‐SH3. The intramolecular binding site to the proline rich domain overlaps the three intermolecular binding sites. To reveal the basis of functional diversity in the ASPP family, we compared their protein‐binding domains. A subset of surface‐exposed residues differentiates ASPP1 and ASPP2 from iASPP: ASPP1/2 are more negatively charged in specific residues that contact positively charged residues of p53CD, Bcl‐2, and NFκB. We also found a gain of positive charge at the non‐protein binding face of ASPP1/2, suggesting a role in electrostatic direction towards the negatively charged protein binding face. The electrostatic differences in binding interfaces between the ASPP proteins may be one of the causes for their different function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
It is now known that the function of the caspase family of proteases is not restricted to effectors of programmed cell death. For example, there is a significant non-apoptotic role for caspase-3 in cell differentiation. Our own studies in the developing lens show that caspase-3 is activated downstream of the canonical mitochondrial death pathway to act as a molecular switch in signaling lens cell differentiation. Importantly, for this function, caspase-3 is activated at levels far below those that induce apoptosis. We now have provided evidence that regulation of caspase-3 for its role in differentiation induction is dependent on the insulin-like growth factor-1 receptor (IGF-1R) survival-signaling pathway. IGF-1R executed this regulation of caspase-3 by controlling the expression of molecules in the Bcl-2 and inhibitor of apoptosis protein (IAP) families. This effect of IGF-1R was mediated through NFκB, demonstrated here to function as a crucial downstream effector of IGF-1R. Inhibition of expression or activation of NFκB blocked expression of survival proteins in the Bcl-2 and IAP families and removed controls on the activation state of caspase-3. The high level of caspase-3 activation that resulted from inhibiting this IGF-1R/NFκB signaling pathway redirected cell fate from differentiation toward apoptosis. These results provided the first evidence that the IGF-1R/NFκB cell survival signal is a crucial regulator of the level of caspase-3 activation for its non-apoptotic function in signaling cell differentiation.  相似文献   

8.
Biton S  Ashkenazi A 《Cell》2011,145(1):92-103
Upon DNA damage, ataxia telangiectasia mutated (ATM) kinase triggers multiple events to promote cell survival and facilitate repair. If damage is excessive, ATM stimulates cytokine secretion to alert neighboring cells and apoptosis to eliminate the afflicted cell. ATM augments cell survival by activating nuclear factor (NF)-κB; however, how ATM induces cytokine production and apoptosis remains elusive. Here we uncover a p53-independent mechanism that transmits ATM-driven cytokine and caspase signals upon strong genotoxic damage. Extensive DNA lesions stimulated two sequential NF-κB activation phases, requiring ATM and NEMO/IKK-γ: The first phase induced TNF-α-TNFR1 feedforward signaling, promoting the second phase and driving RIP1 phosphorylation. In turn, RIP1 kinase triggered JNK3/MAPK10-dependent interleukin-8 secretion and FADD-mediated proapoptotic caspase-8 activation. Thus, in the context of excessive DNA damage, ATM employs NEMO and RIP1 kinase through autocrine TNF-α signaling to switch on cytokine production and caspase activation. These results shed light on cell-fate regulation by ATM.  相似文献   

9.
Cholesterol oxidation products formed under the enhanced oxidative stress in the brain are suggested to induce neuronal cell death. However, it is still unknown whether oxysterol-induced apoptosis in neuronal cells is mediated by Akt and NF-κB pathways. We assessed the apoptotic effect of 7-ketocholesterol against differentiated PC12 cells in relation to activation of the reactive oxygen species-dependent nuclear factor (NF)-κB, which is mediated by the Akt pathway. 7-Ketocholesterol induced a decrease in cytosolic Bid and Bcl-2 levels, increase in cytosolic Bax levels, cytochrome c release, caspase-3 activation and upregulation of p53. 7-Ketocholesterol induced an increase in phosphorylated inhibitory κB-α, NF-κB p65 and NF-κB p50 levels, binding of NF-κB p65 to DNA, and activation of Akt. Treatment with Bay 11-7085 (an inhibitor of NF-κB activation) and oxidant scavengers, including N-acetylcysteine, prevented the 7-ketocholesterol-induced formation of reactive oxygen species, activation of NF-κB, Akt and apoptosis-related proteins, and cell death. Results from this study suggest that 7-ketocholesterol may exert an apoptotic effect against PC12 cells by inducing activation of the caspase-8-dependent pathway as well as activation of the mitochondria-mediated cell death pathway, leading to activation of caspases, via the reactive oxygen species-dependent activation of NF-κB, which is mediated by the Akt pathway.  相似文献   

10.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

11.
Hyperthyroidism can lead to the activation of proteins which are associated with inflammation, apoptosis, hypertrophy, and heart failure. This study aimed to explore the inflammatory and apoptotic proteins involved in the hyperthyroidism-induced cardiac hypertrophy establishment. Male Wistar rats were divided into control and hyperthyroid (12 mg/L L-thyroxine, in drinking water for 28 days) groups. The expression of inflammatory and apoptotic signaling proteins was quantified in the left ventricle by Western blot. Hyperthyroidism was confirmed by evaluation of T3 and T4 levels, as well as cardiac hypertrophy development. There was no change in the expression of HSP70, HIF1-α, TNF-α, MyD88, p-NFκB, NFκB, p-p38, and p38. Reduced expression of p53 and PGC1-α was associated with increased TLR4 and decreased IL-10 expression. Decreased Bcl-2 expression and increased Bax/Bcl-2 ratio were also observed. The results suggest that reduced PGC1-α and IL-10, and elevated TLR4 proteins expression could be involved with the diminished mitochondrial biogenesis and anti-inflammatory response, as well as cell death signaling, in the establishment of hyperthyroidism-induced maladaptive cardiac hypertrophy.  相似文献   

12.
13.
14.
The intricate regulation of cell survival and cell death is critical for the existence of both normal and transformed cells. Two factors central to these processes are p53 and NFκB, with both factors having ascribed roles in both promoting and repressing cell death. Not surprisingly, a number of studies have previously reported interplay between p53 and NFκB. The mechanistic basis behind these observations, however, is currently incomplete. We report here further insights into this interplay using a system where blockade of NFκB inhibits cell death from p53, but at the same time sensitizes cells to death by TNFα. We found in agreement with a recent report showing that NFκB is required for the efficient activation of the BH3-only protein Noxa by the p53 family member p73, that p53’s ability to induce Noxa is also impeded by inhibition of NFκB. In contrast to the regulation by p73, however, blockade of NFκB downstream of p53 decreases Noxa protein levels without effects on Noxa mRNA. Our further analysis of the effects of NFκB inhibition on p53 target gene expression revealed that while most target genes analysed where unaffected by blockade of NFκB, the p53-mediated induction of the pro-apoptotic gene p53AIP1 was significantly dependent on NFκB. These studies therefore add further insight into the complex relationship of p53 and NFκB and since both Noxa and p53AIP1 have been shown to be important components of p53-mediated cell death responses, these findings may also indicate critical points where NFκB plays a pro-apoptotic role downstream of p53.  相似文献   

15.
BRCA1 mutations have long been associated with altered apoptosis. We have recently reported that caspase 3 activation is increased in human ovarian surface epithelial (OSE) cells expressing a germline N-terminal BRCA1 185delAG mutation. Here, we report increased caspase 3 activity in 185delAG OSE cells associated with decreased expression of cIAP-1 and X-linked inhibitor of apoptosis (XIAP), and decreased ubiquitination of caspase 3. Overexpression of XIAP restored active caspase 3 ubiquitination and lowered levels of caspase 3 activity. Further, the BRCA1 185delAG mutation was associated with reduced levels of phosphorylated Akt1. Transfection with activated Akt1 led to increased cIAP-1 and XIAP levels similar to that seen in BRCA1 185delAG cell lines. Taken together, these data suggest a direct link between the BRCA1 185delAG mutation and alterations in the caspase-mediated apoptotic pathway.  相似文献   

16.
X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)是目前发现的最具特征性与作用最强的内源性凋亡抑制蛋白质.XIAP特征性结构是其BIR结构域和RING结构域,它们都是XIAP发挥抗凋亡作用的重要结构.多种内源性抑制蛋白质(XAF1、Smac和Omi)能通过不同的方式抑制XIA...  相似文献   

17.
TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.  相似文献   

18.
Upregulation of miR-34a by p53 is recently believed to be a key mediator in the pro-apoptotic effects of this tumor suppressor. We sought to determine whether restoration of miR-34a levels in p53 deficient cells could rescue the response to DNA damage. Compared with the p53 wildtype U2OS cells, miR-34a expression was much lower in p53 deficient Saos2 cells upon cisplatin treatment. Unexpectedly, delivery of miR-34a in Saos2 cells does not increase the cell sensitivity to apoptosis. This effect was mediated by direct downregulation of SirT1 expression by miR-34a, which in turn increased the NFκB activity. Inhibition of NFκB activity in Saos2 cells by Aspirin sensitized the miR-34a overexpressing cells to cell death. Thus, in tumors with p53 deficiency, miR-34a restoration alone confers drug resistance through Sirt1-NFκB pathway and combination of miR-34a and NFκB inhibitor could be considered as a promising therapeutic strategy.  相似文献   

19.
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号