首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remarkable progress has been made in the development of high‐efficiency solution‐processable nonfullerene organic solar cells (OSCs). However, the effect of the vertical stratification of bulk heterojunction (BHJ) on the efficiency and stability of nonfullerene OSCs is not fully understood yet. In this work, we report our effort to understand the stability of nonfullerene OSCs, made with the binary blend poly[(2,6‐(4, 8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′] dithiophene‐4,8‐dione)] (PBDB‐T):3,9‐ bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐ dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′] dithiophene (ITIC) system. It shows that a continuous vertical phase separation process occurs, forming a PBDB‐T‐rich top surface and an ITIC‐rich bottom surface in PBDB‐T:ITIC BHJ during the aging period. A gradual decrease in the built‐in potential (V0) in the regular configuration PBDB‐T:ITIC OSCs, due to the interfacial reaction between the poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer and ITIC acceptor, is one of the reasons responsible for the performance deterioration. The reduction in V0, caused by an inevitable reaction at the ITIC/PEDOT:PSS interface in the OSCs, can be suppressed by introducing a MoO3 interfacial passivation layer. Retaining a stable and high V0 across the BHJ through interfacial modification and device engineering, e.g., as seen in the inverted PBDB‐T:ITIC OSCs, is a prerequisite for efficient and stable operation of nonfullerene OSCs.  相似文献   

2.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

3.
For ideal flexible transparent electrodes, the features of good electrical/optical properties, low surface roughness, efficient charge transportation, robust electrical stability under simultaneously continuous operation bias, and mechanical bending are critical. Herein, a flexible transparent electrode fulfilling all these features is demonstrated by silver (Ag) nanonetwork composites semi‐embedded in low‐temperature‐processed colorless polyimide (cPI), which shows a figure of merit over 1000 (5.4 Ω sq?1 sheet resistance and >94% diffused transmission at 550 nm wavelength), extremely smooth topography (<1 nm root‐mean‐square roughness and <3 nm peak‐to‐valley roughness), remarkable bending stability under continuous operation bias, and increased work function favoring the band alignment with typical charge transport layers for efficient devices. These characteristics are attributed to one‐step multifunctional chemical treatment on the composite of Ag nanowires and an example polymer of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The strategic one‐step process simultaneously offers selective welding at nanowires cross junctions to form an Ag nanonetwork, and removing polyvinylpyrrolidone surfactant from Ag nanowires and PSS from PEDOT:PSS. The flexible electrode also favors the residue‐free cPI transfer for applications. Flexible organic solar cells (OSCs) made from the electrode achieve an averaged power conversion efficiency of 14.46% (best, 15.12%), which is the best flexible OSCs reported so far.  相似文献   

4.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

5.
Properties of hole transporting layers (HTLs) and back electrode are very critical to the stability of inverted bulk heterojunction organic photovoltaic (OPV) modules. Here, various deposition methods for back electrodes and materials of HTLs are examined by applying to inverted organic solar cells with a structure of indium tin oxide/ZnO/photoactive layer/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Ag. The experiment is performed on encapsulated modules with flexible barrier films under accelerated conditions. The OPV modules with screen‐printed Ag electrodes are shown to be electrically unstable with a reduction of the current density under damp heat condition at 85 °C/85% RH. Optical images for the active layer/PEDOT:PSS interface reveal that a reaction between the solvent from the Ag electrode and the underlying layers is the major cause for the degradation. In comparison with materials of the HTLs, the PEDOT:PSS layer shows low stability compared to the MoO3 layer under the accelerated conditions. Unusual chemical changes in the PEDOT:PSS film are observed through X‐ray photoelectron spectroscopy and this is further addressed by correlating the stability of the OPV devices.  相似文献   

6.
Flexible and semitransparent organic solar cells (OSCs) have been regarded as the most promising photovoltaic devices for the application of OSCs in wearable energy resources and building‐integrated photovoltaics. Therefore, the flexible and semitransparent OSCs have developed rapidly in recent years through the synergistic efforts in developing novel flexible bottom or top transparent electrodes, designing and synthesizing high performance photoactive layer and low temperature processed electrode buffer layer materials, and device architecture engineering. To date, the highest power conversion efficiencies have reached over 10% of the flexible OSCs and 7.7% with average visible transmittance of 37% for the semitransparent OSCs. Here, a comprehensive overview of recent research progresses and perspectives on the related materials and devices of the flexible and semitransparent OSCs is provided.  相似文献   

7.
Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm?1) PEDOT:PSS layer, deposited by a stamp‐transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO‐free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO‐based solar cells. The high fill factor (65%) and the unaffected open‐circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.  相似文献   

8.
The performance of tandem organic solar cells (OSCs) is directly related to the functionality and reliability of the interconnecting layer (ICL). However, it is a challenge to develop a fully functional ICL for reliable and reproducible fabrication of solution‐processed tandem OSCs with minimized optical and electrical losses, in particular for being compatible with various state‐of‐the‐art photoactive materials. Although various ICLs have been developed to realize tandem OSCs with impressively high performance, their reliability, reproducibility, and generic applicability are rarely analyzed and reported so far, which restricts the progress and widespread adoption of tandem OSCs. In this work, a robust and fully functional ICL is developed by incorporating a hydrolyzed silane crosslinker, (3‐glycidyloxypropyl)trimethoxysilane (GOPS), into poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and its functionality for reliable and reproducible fabrication of tandem OSCs based on various photoactive materials is validated. The cross‐linked ICL can successfully protect the bottom active layer against penetration of high boiling point solvents during device fabrication, which widely broadens the solvent selection for processing photoactive materials with high quality and reliability, providing a great opportunity to continuously develop the tandem OSCs towards future large‐scale production and commercialization.  相似文献   

9.
Semitransparent organic solar cells (ST‐OSCs) have appealing features, such as flexibility, transparency, and color in addition to generating clean energy, and therefore show potential applications in building integrated photovoltaics and photovoltaic vehicles. Concerted efforts in materials synthesis (particularly low‐band‐gap polymer donors and nonfullerene acceptors) and device optimization (particularly incorporating transparent electrodes) have raised the efficiencies of ST‐OSCs to >10%, with average visible transparency of >30%. In this Research News article, the recent progress in nonfullerene‐based ST‐OSCs is summarized and discussed. The future perspectives and research directions for the ST‐OSCs field are proposed.  相似文献   

10.
Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.  相似文献   

11.
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high photoconversion efficiency. In this contribution, a new class of organic acceptors di‐cyan substituted quinacridone derivatives (DCN‐nCQA, n = 4, 6 and 8) for BHJ solar cells was designed and synthesized. DCN‐nCQA molecules possess facile synthesis, solution processability, visible and near‐IR light absorption and relatively stable characteristics. The DCN‐8CQA molecule exhibited a proper LUMO energy level (–4.1 eV), small bandgap (1.8 eV) and moderate electron mobility (10?4 cm2 V?1 S?1), suggesting that this molecule is an ideal acceptor material for the classical donor material regio‐regular poly (3‐hexylthiophene) (P3HT). A photovoltaic device with a structure of [ITO/PEDOT:PSS/P3HT:DCN‐8CQA/LiF/Al] displayed a power conversion efficiency of 1.57% and a fill factor of 57% under 100 mW cm?2 AM 1.5G simulated solar illumination. The DCN‐nCQA molecules showed remarkable absorption in the region from 650 to 700 nm, where P3HT has a weak absorption promoting overlap with the solar spectrum and potentially improving the performance of the solar cell.  相似文献   

12.
Indium‐tin‐oxide‐free (ITO‐free) polymer solar cells with composite electrodes containing current‐collecting grids and a semitransparent poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up‐scaling of the length of the solar cell from 1 to 6 cm and the effect of the grid line resistance are explored for a series of devices. Laser‐beam‐induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different resistances. The performance of ITO‐free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large‐area devices at simulated 1 Sun illumination. The generated current uniformity increases with decreasing light intensities.  相似文献   

13.
In the field of organic solar cells (OSCs), tandem structure devices exhibit very attractive advantages for improving power conversion efficiency (PCE). In addition to the well researched novel pair of active layers in different subcells, the construction of interconnecting layer (ICL) also plays a critical role in achieving high performance tandem devices. In this work, a new way of achieving environmentally friendly solvent processed polymeric ICL by adopting poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐5,5′‐bis(2,2′‐thiophene)‐2,6‐naphthalene‐1,4,5,8‐tetracaboxylic‐N,N′‐di(2‐ethylhexyl)imide] (PNDIT‐F3N) blended with poly(ethyleneimine) (PEI) as the electron transport layer (ETL) and PEDOT:PSS as the hole transport layer is reported. It is found that the modification ability of PNDIT‐F3N on PEDOT can be linearly tuned by the incorporation of PEI, which offers the opportunity to study the charge recombination behavior in ICL. At last, tandem OSC with highest PCE of 12.6% is achieved, which is one of the best tandem OSCs reported till now. These results offer a new selection for constructing efficient ICL in high performance tandem OSCs and guide the way of design new ETL materials for ICL construction, and may even be integrated in future printed flexible large area module device fabrication with the advantages of environmentally friendly solvent processing and thickness insensitivity.  相似文献   

14.
In the present work, a Pb‐assisted two step method is successfully proposed to fabricate high‐quality CH3NH3Sn0.5Pb0.5I3 (MASn0.5Pb0.5I3) perovskite film on the indium tin oxide (ITO) glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The film shows regular crystalline grains with a flat and compact morphology as well as full coverage on the planar PEDOT:PSS substrate. Remarkably, corresponding devices ITO/PEDOT:PSS/MASn0.5Pb0.5I3/C60/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/Ag are fabricated with high reproducibility, achieving a high power conversion efficiency of 13.6%, which is, to the best of knowledge, the most efficient solar cell based on Sn‐based perovskite.  相似文献   

15.
Poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used as hole injection/extraction material in organic optoelectronics. However, there still exist drawbacks for PEDOT:PSS such as low work function (WF), poor structural and electrical homogeneity. To solve these problems, methylnaphthalene sulfonate formaldehyde condensate (MNSF) is applied, which has excellent dispersion property, branched chemical structure, and low cost, as dispersant and dopant instead of linear PSS to prepare PEDOT:MNSF. The hole injection/extraction capability of PEDOT:MNSF is systematically studied in organic optoelectronic devices. PEDOT:MNSF‐1:6 exhibits unexpected high device performance with a maxima current efficiency of 33.4 cd A?1 in blue phosphorescent organic light‐emitting diode and a power conversion efficiency of 13.1% in CH3NH3PbIx Cl3?x ‐based inverted perovskite solar cell, respectively. Compared with PEDOT:PSS, the relatively higher efficiency of PEDOT:MNSF‐1:6 is attributed mainly to its higher WF of 5.29 eV, structural and electrical homogeneity. Our research displays a promising future of MNSF as a cheap and widely available alternative of PSS. Moreover, a clear map is provided for the design of dopant for PEDOT considering the structure of dopant.  相似文献   

16.
A solution‐processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3‐PEDOT:PSS). This MoO3‐PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐diyl‐alt‐thiophene‐2,5‐diyl] (TQ1):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) blends using MoO3‐PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS‐based device. More importantly, the device with MoO3‐PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3‐PEDOT:PSS implies the potential for low‐cost roll‐to‐roll fabrication of high‐efficiency polymer solar cells with long‐term stability at ambient conditions.  相似文献   

17.
A rapid layer‐specific annealing on perovskite active layer enabled by ultraviolet (UV) light‐emitting diode (LED) is demonstrated and efficiency close to 19% is achieved in a simple planar inverted structure ITO/PEDOT:PSS/MAPbI3/PC71BM/Al without any device engineering. These results demonstrate that if the UV dosage is well managed, UV light is capable of annealing perovskite into high‐quality film rather than simply damaging it. Different in principle from other photonic treatment techniques that can heat up and damage underlying films, the UV‐LED‐annealing method enables layer‐specific annealing because LED light source is able to provide a specific UV wavelength for maximum light absorption of target film. Moreover, the layer‐specific photonic treatment allows accurate estimation of the crystallization energy required to form perovskite film at device quality level.  相似文献   

18.
Highly efficient organic–inorganic hybrid solar cells of Si‐poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been demonstrated by simultaneous structural, electrical, and interfacial engineering with low processing temperature. Si substrate has been sculpted into hierarchical structure to reduce light reflection loss and increase interfacial junction area at the same time. Regarding the electrical optimization, highly conductive organic PEDOT:PSS layer has been formulated with low sheet resistance. It is argued that the sheet resistance, rather than conductivity, is the primary parameter for the high efficiency hybrid cells, which leads to the optimization of thickness, i.e., thick enough to have low sheet resistance but transparent enough to pass the incident sunlight. Finally, siloxane oligomers have been inserted into top/bottom interfaces by contact‐printing at room ambient, which suppresses carrier recombination at interfaces and reduces contact resistance at bottom electrode. Contrary to high‐temperature doping (for the formation of front surface or back surface fields), wet solution processes or vacuum‐based deposition, the contact‐printing can be done at room ambient to reduce carrier recombination at the interfaces. The high efficiency obtained with low processing temperature can make this type of cells be a possible candidate for post‐Si photovoltaics.  相似文献   

19.
Photovoltaic tandem technology has the potential to boost the power conversion efficiency of organic photovoltaic devices. Here, a reliable and efficient fully solution‐processed intermediate layer (IML) consisting of ZnO and neutralized poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series‐connected multi‐junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution‐processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure. An open circuit voltage (Voc) of 0.56 V is obtained for single‐junction OSCs based on a low band‐gap polymer, while multi‐junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical simulations, which are reliable and promising guidelines for the design and investigation of multi‐junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution‐processed IML. The demonstration of this efficient, solution‐processed IML represents a convenient way for facilitating fabrication of multi‐junction OSCs to achieve high power conversion efficiency.  相似文献   

20.
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm2) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号