首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We demonstrate the potential of metallurgical controlling of the phase separation reaction, by means of spark plasma sintering consolidation and subsequently controlled heat treatments sequence, for enhancement the thermoelectric properties of the p‐type Ge0.87Pb0.13Te composition. Very high ZTs of up to ~2, attributed to the nucleation of sub‐micron phase separation domains and to comparable sized twinning and dislocation networks features, were observed. Based on the experimentally measured transport properties, combined with the previously reported phase separated n‐type (Pb0.95Sn0.05Te)0.92(PbS)0.08 composition, a maximal efficiency value of ~11.5% was theoretically calculated. These ZT and efficiency values are among the highest reported for single composition non‐segmented bulk material legs.  相似文献   

3.
As commercial interest in flexible power‐conversion devices increases, the demand for high‐performance alternatives to brittle inorganic thermoelectric (TE) materials is growing. As an alternative, we propose a rationally designed graphene/polymer/inorganic nanocrystal free‐standing paper with high TE performance, high flexibility, and mechanical/chemical durability. The ternary hybrid system of the graphene/polymer/inorganic nanocrystal includes two hetero­junctions that induce double‐carrier filtering, which significantly increases the electrical conductivity without a major decrease in the thermopower. The ternary hybrid shows a power factor of 143 μW m?1 K?1 at 300 K, which is one to two orders of magnitude higher than those of single‐ or binary‐component materials. In addition, with five hybrid papers and polyethyleneimine (PEI)‐doped single‐walled carbon nanotubes (SWCNTs) as the p‐type and n‐type TE units, respectively, a maximum power density of 650 nW cm?2 at a temperature difference of 50 K can be obtained. The strategy proposed here can improve the performance of flexible TE materials by introducing more heterojunctions and optimizing carrier transfer at those junctions, and shows great potential for the preparation of flexible or wearable power‐conversion devices.  相似文献   

4.
Taking La‐ and I‐doped PbTe as an example, the current work shows the effects of optimizing the thermoelectric figure of merit, zT, by controlling the doping level. The high doping effectiveness allows the carrier concentration to be precisely designed and prepared to control the Fermi level. In addition to the Fermi energy tuning, La‐doping modifies the conduction band, leading to an increase in the density of states effective mass that is confirmed by transport, infrared reflectance and hard X‐ray photoelectron spectroscopy measurements. Taking such a band structure modification effect into account, the electrical transport properties can then be well‐described by a self‐consistent single non‐parabolic Kane band model that yields an approximate (m*T)1.5 dependence of the optimal carrier concentration for a peak power factor in both doping cases. Such a simple temperature dependence also provides an effective approximation of carrier concentration for a peak zT and helps to explain, the effects of other strategies such as lowering the lattice thermal conductivity by nanostructuring or alloying in n‐PbTe, which demonstrates a practical guide for fully optimizing thermoelectric materials in the entire temperature range. The principles used here should be equally applicable to other thermoelectric materials.  相似文献   

5.
High thermoelectric performance of mechanically robust p‐type Bi2Te3‐based materials prepared by melt spinning (MS) combined with plasma‐activated sintering (PAS) method can be obtained with small, laboratory grown samples. However, large‐size samples are required for commercial applications. Here, large‐size p‐type Bi2Te3‐based ingots with 30, 40, and 60 mm in diameter are produced by MS‐PAS, and the influence of temperature distribution during the sintering process on the composition and thermoelectric properties is systematically studied for the first time. Room‐temperature scanning Seebeck Microprobe results show that the large‐size ingot is inhomogeneous, induced by ellipsoidal‐shape‐distributed temperature field during the sintering process, which is verified by finite‐element analysis. Although some temperature differences are unavoidable in the sintering process, homogeneity and mechanical properties of ingots can be improved by appropriately extending the sintering time and design of graphite die. Samples cut from ingots attain the peak ZT value of 1.15 at 373 K, about 17% enhancement over commercial zone‐melted samples. Moreover, the compressive and bending strengths are improved by several times as well. It is important to ascertain that large‐size p‐type Bi2Te3‐based thermoelectric materials with high thermoelectric performance can be fabricated by MS‐PAS.  相似文献   

6.
The rapid development of the concept of the “Internet of Things (IoT)” requires wearable devices with maintenance‐free batteries, and thermoelectric energy conversion based on large‐area flexible materials has attracted much attention. Among large‐area flexible materials, 2D materials, such as graphene and related materials, are promising for thermoelectric applications due to their excellent transport properties and large power factors. In this Review, both single‐crystalline and polycrystalline 2D materials are surveyed using the experimental reports on thermoelectric devices of graphene, black phosphorus, transition metal dichalcogenides, and other 2D materials. In particular, their carrier‐density dependent thermoelectric properties and power factors maximized by Fermi level tuning techniques are focused. The comparison of the relevant performances between 2D materials and commonly used thermoelectric materials reveals the significantly enhanced power factors in 2D materials. Moreover, the current progress in thermoelectric module applications using large‐area 2D material thin films is summarized, which consequently offers great potential for the use of 2D materials in large‐area flexible thermoelectric device applications. Finally, important remaining issues and future perspectives, such as preparation methods, thermal transports, device designs, and promising effects in 2D materials, are discussed.  相似文献   

7.
Thermoelectric (TE) materials have the capability of converting heat into electricity, which can improve fuel efficiency, as well as providing robust alternative energy supply in multiple applications by collecting wasted heat, and therefore, assisting in finding new energy solutions. In order to construct high performance TE devices, superior TE materials have to be targeted via various strategies. The development of high performance TE devices can broaden the market of TE application and eventually boost the enthusiasm of TE material research. This review focuses on major novel strategies to achieve high‐performance TE materials and their applications. Manipulating the carrier concentration and band structures of materials are effective in optimizing the electrical transport properties, while nanostructure engineering and defect engineering can greatly reduce the thermal conductivity approaching the amorphous limit. Currently, TE devices are utilized to generate power in remote missions, solar–thermal systems, implantable or/wearable devices, the automotive industry, and many other fields; they are also serving as temperature sensors and controllers or even gas sensors. The future tendency is to synergistically optimize and integrate all the effective factors to further improve the TE performance, so that highly efficient TE materials and devices can be more beneficial to daily lives.  相似文献   

8.
Smart windows are one of the key components of so‐called “green” buildings. These windows are based on an actively switchable electro‐optic material that is sandwiched between two transparent electrodes. Although great progress has been made in identifying the optimal materials for such active windows, there is still a great need to improve their key elements, especially the performance of the transparent electrodes. Here, a new suspended particle device (SPD), holding a great potential for smart window applications, which is built upon copper‐reduced graphene oxide (Cu‐rGO) core–shell nanowire (NW) films as a transparent conductive electrode is reported. With the wrapping of rGO, the Cu NW electrodes demonstrate both high optical transparency and electrical conductivity, as well as significantly improved stability under various testing conditions. The novel sandwich‐structured SPDs, based on these electrodes, show a large change in their optical transmittance (42%) between “on” and “off” states, impressively fast switching time and superior stability. These high performances are comparable to those of the SPDs based on indium tin oxide electrodes. These promising results pave the way for the electrodes to be an integral part of a variety of optoelectronic devices, including energy‐friendly and flexible electronics.  相似文献   

9.
10.
As a promising thermoelectric material, higher manganese silicides are composed of earth‐abundant and eco‐friendly elements, and have attracted extensive attention for future commercialization. In this review, the authors first summarize the crystal structure, band structure, synthesis method, and pristine thermoelectric performance of different higher manganese silicides. After that, the strategies for enhancing electrical performance and reducing lattice thermal conductivity of higher manganese silicides as well as their synergism are highlighted. The application potentials including the chemical and mechanical stability of higher manganese silicides and their energy conversion efficiency of the assembled thermoelectric modules are also summarized. By analyzing the current advances in higher manganese silicides, this review proposes that potential methods of further enhancing zT of higher manganese silicides, lie in enhancing electrical performance while simultaneously reducing lattice thermal conductivity via reducing effective mass, optimizing carrier concentration, and nanostructure engineering.  相似文献   

11.
Relaxor ferroelectrics usually possess low remnant polarizations and slim hystereses, which can provide high saturated polarizations and superior energy conversion efficiencies, thus receiving increasing interest as energy storage materials with high discharge energy densities and fast discharge ability. In this study, a relaxor ferroelectric multilayer energy storage ceramic capacitor (MLESCC) based on 0.87BaTiO3‐0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 (BT‐BZNT) with inexpensive Ag/Pd inner electrodes is prepared by the tape casting method. The MLESCC with two dielectric layers (layer thicknesses of 5 µm) sintered by a two‐step sintering method exhibits excellent energy storage properties with a record‐high discharge energy density of 10.12 J cm?3, a high energy efficiency of 89.4% achieved at an electric field of 104.7 MV m?1, a high temperature stability of the energy storage density (with minimal variation of <±5%), and energy efficiency (>90%) over a range of ?75 to 150 °C at 40 MV m?1. These results suggest that the BT‐BZNT relaxor ferroelectric ceramic material can provide realistic solutions for high‐power energy storage capacitors.  相似文献   

12.
Perylene diimide (PDI) derivatives hold great promise as stable, solution‐printable n‐type organic thermoelectric materials, but as of yet lack sufficient electrical conductivity to warrant further development. Hybrid PDI‐inorganic nanomaterials have the potential to leverage these physical advantages while simultaneously achieving higher thermoelectric performance. However, lack of molecular level insight precludes design of high performing PDI‐based hybrid thermoelectrics. Herein, the first explicit crystal structure of these materials is reported, providing previously inaccessible insight into the relationship between their structure and thermoelectric properties. Allowing this molecular level insight to drive novel methodologies, simple solution‐based techniques to prepare PDI hybrid thermoelectric inks with up to 20‐fold enhancement in thermoelectric power factor over the pristine molecule (up to 17.5 µW mK?2) is presented. This improved transport is associated with reorganization of organic molecules on the surface of inorganic nanostructures. Additionally, outstanding mechanical flexibility is demonstrated by fabricating solution‐printed thermoelectric modules with innovative folded geometries. This work provides the first direct evidence that packing/organization of organic molecules on inorganic nanosurfaces is the key to effective thermoelectric transport in nanohybrid systems.  相似文献   

13.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Fiber‐based flexible thermoelectric energy generators are 3D deformable, lightweight, and desirable for applications in large‐area waste heat recovery, and as energy suppliers for wearable or mobile electronic systems in which large mechanical deformations, high energy conversion efficiency, and electrical stability are greatly demanded. These devices can be manufactured at low or room temperature under ambient conditions by established industrial processes, offering cost‐effective and reliable products in mass quantity. This article presents a critical overview and review of state‐of‐the‐art fiber‐based thermoelectric generators, covering their operational principle, materials, device structures, fabrication methods, characterization, and potential applications. Scientific and practical challenges along with critical issues and opportunities are also discussed.  相似文献   

15.
Microstructure manipulation plays an important role in enhancing physical and mechanical properties of materials. Here a high figure of merit zT of 1.2 at 357 K for n‐type bismuth‐telluride‐based thermoelectric (TE) materials through directly hot deforming the commercial zone melted (ZM) ingots is reported. The high TE performance is attributed to a synergistic combination of reduced lattice thermal conductivity and maintained high power factor. The lattice thermal conductivity is substantially decreased by broad wavelength phonon scattering via tuning multiscale microstructures, which includes microscale grain size reduction and texture loss, nanoscale distorted regions, and atomic scale lattice distotions and point defects. The high power factor of ZM ingots is maintained by the offset between weak donor‐like effect and texture loss during the hot deformation. The resulted high zT highlights the role of multiscale microstructures in improving Bi2Te3‐based materials and demonstrates the effective strategy in enhancing TE properties.  相似文献   

16.
Half‐Heusler (HH) compounds have gained ever‐increasing popularity as promising high temperature thermoelectric materials. High figure of merit zT of ≈1.0 above 1000 K has recently been realized for both n‐type and p‐type HH compounds, demonstrating the realistic prospect of these high temperature compounds for high efficiency power generation. Here, recent progress in advanced fabrication techniques and the intrinsic atomic disorders in HH compounds, which are linked to the understanding of the electrical transport, is discussed. Thermoelectric transport features of n‐type ZrNiSn‐based HH alloys are particularly emphasized, which is beneficial to further improving thermoelectric performance and comprehensively understanding the underlying mechanisms in HH thermoelectric materials. The rational design and realization of new high performance p‐type Fe(V,Nb)Sb‐based HH compounds are also demonstrated. The outlook for future research directions of HH thermoelectric materials is also discussed.  相似文献   

17.
It is reported that electron doped n‐type SnSe2 nanoplates show promising thermoelectric performance at medium temperatures. After simultaneous introduction of Se deficiency and Cl doping, the Fermi level of SnSe2 shifts toward the conduction band, resulting in two orders of magnitude increase in carrier concentration and a transition to degenerate transport behavior. In addition, all‐scale hierarchical phonon scattering centers, such as point defects, nanograin boundaries, stacking faults, and the layered nanostructures, cooperate to produce very low lattice thermal conductivity. As a result, an enhanced in‐plane thermoelectric figure of merit ZTmax of 0.63 is achieved for a 1.5 at% Cl doped SnSe1.95 pellet at 673 K, which is much higher than the corresponding in‐plane ZT of pure SnSe2 (0.08).  相似文献   

18.
Here, a simple active materials synthesis method is presented that boosts electrode performance and utilizes a facile screen‐printing technique to prepare scalable patterned flexible supercapacitors based on manganese hexacyanoferrate‐manganese oxide and electrochemically reduced graphene oxide electrode materials (MnHCF‐MnOx/ErGO). A very simple in situ self‐reaction method is developed to introduce MnOx pseudocapacitor material into the MnHCF system by using NH4F. This MnHCF‐MnOx electrode materials can deliver excellent capacitance of 467 F g?1 at a current density of 1 A g?1, which is a 2.4 times capacitance increase compared to MnHCF. In addition a printed, patterned, flexible MnHCF‐MnOx/ErGO supercapacitor is fabricated, showing a remarkable areal capacitance of 16.8 mF cm?2 and considerable energy and power density of 0.5 mWh cm?2 and 0.0023 mW cm?2, respectively. Furthermore, the printed patterned flexible supercapacitors also exhibit exceptional flexibility, and the capacitance remains stable, even while bending to various angles (60°, 90°, and 180°) and for 100 cycles. The flexible supercapacitor arrays integrated by multiple prepared single supercapacitors can power various LEDs even in the bent states. This approach offers promising opportunities for the development of printable energy storage materials and devices with high energy density, large scalability, and excellent flexibility.  相似文献   

19.
The ultrahigh thermoelectric performance of SnSe‐based single crystals has attracted considerable interest in their polycrystalline counterparts. However, the temperature‐dependent structural transition in SnSe‐based thermoelectric materials and its relationship with their thermoelectric performance are not fully investigated and understood. In this work, nanolaminar SnSe polycrystals are prepared and characterized in situ using neutron and synchrotron powder diffraction measurements at various temperatures. Rietveld refinement results indicate that there is a complete inter‐orthorhombic evolution from Pnma to Cmcm by a series of layer slips and stretches along the a‐ and b‐axes over a 200 K temperature range. This phase transition leads to drastic enhancement of the carrier concentration and phonon scattering above 600 K. Moreover, the unique nanolaminar structure effectively enhances the carrier mobility of SnSe. Their grain and layer boundaries further improve the phonon scattering. These favorable factors result in a high ZT of 1.0 at 773 K for pristine SnSe polycrystals. The thermoelectric performances of polycrystalline SnSe are further improved by p‐type and n‐type dopants (i.e., doped with Ag and SnCl2, respectively), and new records of ZT are achieved in Ag0.015Sn0.985Se (ZT of 1.3 at 773 K) and SnSe0.985Cl0.015 (ZT of 1.1 at 773 K) polycrystals.  相似文献   

20.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号