首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquatic hyphomycetes (Moniliales) constitute a predominant mycoflora on submerged decaying allochthonous plant debris, both in lentic and lotic systems. These fungi exhibit a remarkable seasonality, and to explain this, a couple of models have been put forward, which tend to establish a strong correlation of their seasonal occurrence with temperature and pH of the aquatic systems. This study provides additional evidence that both vegetative and reproductive success of aquatic hyphomycetes is significantly affected by the interspecies interactions within this group.  相似文献   

2.
Decomposition of leaf litter is a microbial mediated process that helps to transfer energy and nutrients from leaves to higher trophic levels in woodland streams. Generally, aquatic hyphomycetes are viewed as the major fungal group responsible for leaf litter decomposition. In this study, traditional microscopic examination (based on identification of released conidia) and phylogenetic analysis of 18S rRNA genes from cultivated fungi were used to compare fungal community composition on decomposing leaves of two species (sugar maple and white oak) from a NE Ohio stream. No significant differences were found in sporulation rates between maple and oak leaves and both had similar species diversity. From the 18S rRNA gene sequence data, identification was achieved for 12 isolates and taxonomic affiliation of 12 of the remaining 14 isolates could be obtained. A neighbor-joining tree (with bootstrap values) was constructed to examine the taxonomic distribution of the isolates relative to sequences of known operational taxonomic units (OTUs). Surprisingly, only 2 of the isolates obtained were aquatic hyphomycetes based on phylogenetic analysis. Overall, there were no differences between the two leaf types and a higher diversity was observed via culturing and subsequent 18S rRNA gene sequencing than by conidia staining. These differences resulted from the fact that traditional microscopy provides estimates of aquatic hyphomycete diversity while the other approach revealed the presence of both aquatic hyphomycete and non-aquatic hyphomycete taxa. The presence of this broad array of taxa suggests that the role of aquatic hyphomycetes relative to other fungi be re-evaluated. Even though the functional role of these non-aquatic hyphomycetes taxa is unknown, their presence and diversity demonstrates the need to delve further into fungal community structure on decomposing leaves.  相似文献   

3.
  1. The importance of flow‐related factors to benthic organisms, as well as the role of habitat conditions in shaping aquatic communities during low‐flow periods, have been recognised. Despite this, the preferences of macroinvertebrates to the ratio of lentic to lotic habitats at the reach scale have not been accurately quantified in most instances.
  2. Aquatic invertebrates and habitat features in a range of temporary rivers in Sardinia were investigated. The investigation focused on the flow‐related characteristics that contribute to defining the lentic–lotic condition of the river reaches. The relation of habitat features to benthic taxa distributions was assessed using multidimensional scaling. The main aim of the paper was to quantify the responses of taxa to the different lentic and lotic habitat conditions by applying hierarchical logistic regressions. Finally, taxon optima were aligned along the lentic–lotic gradient and the responses of different taxonomic groups compared.
  3. Unbroken waves and imperceptible flow were correlated with benthic taxa variability, suggesting local hydraulics and turbulence have a major role in regulating community composition. The overall lentic–lotic character of the river reaches was also clearly related to the benthic taxa distribution. More than 80% of taxa were significantly related to the lentic–lotic gradient, and an asymmetrical response curve was the predominant model.
  4. Benthic groups showed taxon optima clustered in different ranges of the lentic–lotic gradient. Odonata, Coleoptera, Hemiptera, and Mollusca preferred clearly lentic conditions. Diptera mainly ranged on the lotic side of the gradient, while Trichoptera were relatively uniformly distributed across the gradient. Ephemeroptera taxa clustered in intermediate lentic–lotic conditions, with two species preferring extremely lentic habitats. In general, optima converged at intermediate and extremely lentic conditions, presumably due, respectively, to the coexistence of different lentic and lotic features and to the highly diverse environmental characteristics under extremely lentic situations.
  5. These results support the conclusion that dissimilar ecological factors act on benthic taxa along the lentic–lotic range and species favouring different lentic–lotic conditions are subjected to pressures of different nature. This should not be ignored when defining species preferences and studying community structure or relationships between species in Mediterranean rivers, which cyclically vary their habitat composition. In addition, the uneven distribution of optima of different groups along the lentic–lotic gradient might affect macroinvertebrate metrics when assessing ecological status or establishing reference conditions under variable climatic conditions.
  相似文献   

4.
Role of fungi in freshwater ecosystems   总被引:7,自引:0,他引:7  
There are more than 600 species of freshwater fungi with a greater number known from temperate, as compared to tropical, regions. Three main groups can be considered which include Ingoldian fungi, aquatic ascomycetes and non-Ingoldian hyphomycetes, chytrids and, oomycetes. The fungi occurring in lentic habitats mostly differ from those occurring in lotic habitats. Although there is no comprehensive work dealing with the biogeography of all groups of freshwater fungi, their distribution probably follows that of Ingoldian fungi, which are either cosmopolitan, restricted to pantemperate or pantropical regions, or in a few cases, have a restricted distribution. Freshwater fungi are thought to have evolved from terrestrial ancestors. Many species are clearly adapted to life in freshwater as their propagules have specialised aquatic dispersal abilities. Freshwater fungi are involved in the decay of wood and leafy material and also cause diseases of plants and animals. These areas are briefly reviewed. Gaps in our knowledge of freshwater fungi are discussed and areas in need of research are suggested.  相似文献   

5.
Freshwater ascomycetes are important decomposers of dead woody and herbaceous debris in aquatic habitats. Despite evidence of their ecological importance, latitudinal, habitat and substrate distributional patterns of freshwater ascomycetes are poorly understood. In this study, we examined the latitudinal and habitat distributional patterns, and substrate recurrences of freshwater ascomycetes by collecting dead submerged woody and herbaceous debris in lentic and lotic habitats at five selected sites along a north-central-south, temperate–subtropical latitudinal ecotone in Florida. One hundred and thirty-two fungal taxa were collected during the study. Seventy-four were meiosporic and 56 were mitosporic ascomycetes, while two species were basidiomycetes. Canonical analyses of principal coordinates (CAP) and Sørenson’s similarity index of species based on presence/absence data revealed a high turnover in species composition between the northern and southern sites, indicating a change in species composition along the temperate–subtropical latitudinal ecotone of the Florida Peninsula. Results from the ordination analysis indicated that freshwater ascomycete community composition is not significantly different between lentic and lotic habitats in Florida. The geographically broadly distributed species and species commonly found in Florida occurred in both habitats, whereas a number of new or rare species occurred in either lentic or lotic habitats, but not both. The same freshwater ascomycete species did not necessarily occur on both woody and herbaceous debris; of the 132 taxa collected, 100 were reported only on woody debris; 14 species occurred exclusively on herbaceous debris; and 18 species were found on both woody and herbaceous debris in lentic or lotic habitats. Implications of data from this study to the conservation and knowledge of biodiversity for freshwater ascomycetes is discussed.  相似文献   

6.
A first contribution towards the taxonomy of testate amoebae (Rhizopodea – Sarcodina) recorded in planktonic samples of lotic and lentic environments in the high Paraná River Floodplain in the States of Paraná and Mato Grosso do Sul, Brazil, is provided. Twenty-four taxa belonging to the families Arcellidae and Centropyxidae were identified, described and sketched. Among the taxa, A. vulgaris f. undulata, A. vulgaris var. penardi, A. mitrata var. spectabilis, A. nordestina and Centropyxis aculeata var. tropica represent new occurrences in Brazil.  相似文献   

7.
SUMMARY 1. Decomposition of red maple ( Acer rubrum ) and rhododendron ( Rhododendron maximum ) leaves and activity of associated microorganisms were compared in two reaches of a headwater stream in Coweeta Hydrologic Laboratory, NC, U.S.A. The downstream reach was enriched with ammonium, nitrate, and phosphate whereas the upstream reach was not altered.
2. Decomposition rate, microbial respiration, fungal and bacterial biomass, and the sporulation rate of aquatic hyphomycetes associated with decomposing leaf material were significantly higher for both leaf types in the nutrient-enriched reach. Species richness and community structure of aquatic hyphomycetes also exhibited considerable changes with an increase in the number of fungal codominants in the nutrient-enriched reach.
3. Fungal biomass was one to two orders of magnitude greater than bacterial biomass in both reaches. Changes in microbial respiration rate corresponded to those in fungal biomass and sporulation, suggesting a primary role of fungi in leaf decomposition.
4. Nutrient enrichment increased microbial activity, the proportion of leaf carbon channelled through the microbial compartment and the decomposition rate of leaf litter.  相似文献   

8.
Progress in the study of the freshwater aquatic fungal flora (mainly hyphomycetes) of submerged decaying leaves of dicotyledonous trees and shrubs, since the discovery of the flora in 1942, is reviewed. The abundant occurrence of liberated conidia, which tend to be of distinctive form, in persistent foam on a stream is noted and illustrated by an example from Scotland. Developments in the taxonomy of these fungi since 1942 are noted. About 60 genera and around 120 species are now recorded. In a number the perfect stage has been discovered. In most cases it has proved to be an ascomycete, but it is sometimes a basidiomycete. Conidium development in aquatic hyphomycetes is discussed in the light of recent views on the classification of conidial types. It is argued that the most valid distinction is between phialoconidia and other types, rather than between those of blastic and those of thallic development. Dispersal is discussed with special reference to upstream spread and the problem of dispersal from one isolated water system to another. Finally, attention is given to the ecology and general physiology of these fungi. Their possible importance in processing decaying leaves for subsequent consumption by small aquatic animals is considered. The terrestrial occurrence of many “aquatic hyphomycetes” is noted and it is suggested that “amphibious hyphomycetes” might be a better term.  相似文献   

9.
Gulis V  Suberkropp K 《Mycologia》2004,96(1):57-65
The concentrations and relative abundances of aquatic hyphomycete conidia in water were followed during a three-year study in two headwater streams at Coweeta Hydrologic Laboratory, North Carolina, using the membrane-filtration technique. After a one-year pretreatment period, one of the streams was enriched continuously with inorganic nutrients (N+P) for two years while the other stream served as the reference. This ecosystem-level nutrient manipulation resulted in concentrations of aquatic hyphomycete conidia in the water of the treated stream that were 4.5-6.9 times higher than the concentrations observed during the pretreatment period and in the reference stream. Nutrient enrichment led to an increase in the number of fungal species detected on each sampling date. Changes in dominance patterns and relative abundances of individual species also were detected after treatment. Nutrient addition stimulates the reproductive activity of aquatic hyphomycetes, their colonization success and fungal-mediated leaf-litter decomposition. Such changes in the activity of the fungal community might affect higher trophic levels in lotic ecosystems.  相似文献   

10.
Aim In aquatic ecosystems, standing (lentic) and running (lotic) waters differ fundamentally in their stability and persistence, shaping the comparative population genetic structure, geographical range size and speciation rates of lentic versus lotic lineages. While the drivers of this pattern remain incompletely understood, the suite of traits making up the ability of a species to establish new populations is instrumental in determining such differences. Here we explore the degree to which the association between habitat type and geographical range size results from differences in dispersal ability or fundamental niche breadth in the members of the Enochrus bicolor complex, an aquatic beetle clade with species across the lentic–lotic divide. Location Western Mediterranean, with a special focus on North Africa, the Iberian Peninsula and Sicily. Methods DNA sequences for four loci were obtained from species of the E. bicolor complex and analysed using phylogenetic inference. Dispersal and establishment abilities were assessed in lentic–lotic species pairs of the complex, using flight wing morphometrics and thermal tolerance ranges as surrogates, respectively. Results There were clear differences in range size between the lotic and lentic taxa of the complex, which appears to have had a lotic origin with two transitions to standing waters. Only small differences were observed in temperature tolerance and acclimation ability between the two lotic–lentic sister species studied. By contrast, wing morphometrics revealed clear, consistent differences between lotic and lentic Enochrus species pairs, the latter having a higher dispersal capacity. Main conclusions We hypothesize that there have been two habitat shifts from lotic to lentic waters, which have allowed marked expansions in geographical range size in western Mediterranean species of the E. bicolor complex. Differences in dispersal rather than in establishment ability appear to underlie differences in geographical range extent, as transitions to lentic waters were associated with changes in wing morphology, but not in thermal tolerance range. In this lineage of water beetles, selection for dispersal in geologically short‐lived lentic systems has driven the evolution of larger range sizes in lentic taxa compared with those of their lotic relatives.  相似文献   

11.
Bacterial and fungal decomposers of aquatic plant litter may exhibit either synergistic or antagonistic interactions, which are likely to influence microbial growth as well as the decomposition of litter and, eventually, the carbon metabolism of aquatic systems. To elucidate such interactions, we inoculated decomposing Phragmites culms in microcosms with fungal isolates and with natural communities of bacteria and fungi in different combinations. The development of fungal and bacterial biomass and the carbon dynamics were studied during several months of degradation. The results show a bilateral antagonistic relationship between bacteria and fungi. After 3 months, fungal biomass accumulation was approximately 12 times higher in the absence than in the presence of bacteria. Bacterial biomass accumulation was about double in the absence of fungi compared to when fungi were present. Similar interactions developed between a natural assemblage of bacteria and five different fungal strains isolated from Phragmites litter (three identified hyphomycetes and two unidentified strains). Despite the great difference in biomass development between the treatments, the carbon metabolism was similar regardless of whether fungi and/or bacteria were present alone or in coexistence. We suggest that the antagonism between bacteria and fungi is an important controlling factor for microbial colonization and growth on aquatic plant litter.  相似文献   

12.
In surveys carried out in lotic and lentic environments in Mariana County, Minas Gerais state, Brazil, 35 genera and 64 species of aquatic and semi-aquatic Heteroptera were recorded, distributed in 13 families. Thirty four species were collected in lentic environments, while in lotic environments 48 species were collected, some of them common to both environments. Nepomorpha presented the greatest number of species (45), markedly for the family Naucoridae, represented by 12 species. Among the 19 Gerromorpha species collected, eight were Veliidae and six were Gerridae.  相似文献   

13.
In 1942, Ingold documented an ecologically defined group of fungi, aquatic hyphomycetes, on autumn-shed leaves decaying in streams. They were shown to be vital intermediaries between the nutritionally poor leaf substratum and leaf-eating invertebrates. Research has subsequently emphasized functional aspects such as leaf decomposition and nutritional conditioning by fungi. Structural aspects (community composition) have attracted less attention, partly because of the difficulties of identifying fungal mycelia in situ. Extraction, amplification (PCR, qPCR) and characterization of DNA and RNA, and, more recently, of proteins, allow much greater insights into the presence of fungal taxa, their metabolic status (dead, dormant or active), and their potential and actual participation in decomposition processes. This approach can yield huge amounts of data, and major challenges today are the development and application of suitable bioinformatics techniques. The complexity of data collection and evaluation favour interdisciplinary teams of researchers. Fungi are major players in most ecosystems and are increasingly affected by human impacts. Changing land use, eutrophication/pollution and climate change are among the major factors that affect diversity and ecological functions of aquatic hyphomycetes.  相似文献   

14.
Aquatic shredders (leaf-eating invertebrates) preferentially ingest and digest leaves colonized by aquatic hyphomycetes (fungi). This activity destroys leaf-associated fungal biomass and detritial resources in streams. Fungal counter-adaptations may include the ability to survive passage through the invertebrate's digestive tract. When fecal pellets of Gammarus tigrinus and Hyalella azteca were incubated with sterile leaves, spores of nine (G. tigrinus) and seven (H. azteca) aquatic hyphomycete species were subsequently released from the leaves, indicating the presence of viable fungal structures in the feces. Extraction, amplification, and sequencing of DNA from feces revealed numerous fungal phylotypes, two of which could be assigned unequivocally to an aquatic hyphomycete. The estimated contributions of major fungal groups varied depending on whether 18S or ITS sequences were amplified and cloned. We conclude that a variable proportion of fungal DNA in the feces of detritivores may originate from aquatic hyphomycetes. Amplified DNA may be associated with metabolically active, dormant, or dead fungal cells.  相似文献   

15.
Decomposition of plant matter is a key ecosystem process and considerable research has examined plant litter decay processes in freshwater habitats. Fungi are common inhabitants of the decomposer microbial community and representatives of all major fungal phyla have been identified within freshwater systems. Development and application of quantitative methods over the last several decades have firmly established that fungi are central players in the decomposition of plant litter in freshwaters and are important mediators of energy and nutrient transfer to higher trophic levels. Despite the critical roles that fungi play in carbon and nutrient cycling in freshwater ecosystems, there are notable differences in the types and adaptations of fungal communities between lotic and lentic habitats. These differences can be explained by the wide range of hydrologic, physical, chemical and biological conditions within freshwater systems, all of which can influence the presence, type, and activity of fungal decomposers and their impact on litter decomposition. This paper seeks to provide a brief overview of the types, adaptations, and role of fungi within lotic and lentic freshwater ecosystems, with a particular emphasis on their importance to litter decomposition and the key environmental conditions that impact their growth and decay activities. This discussion will specifically focus on fungal dynamics occurring on plant litter in forested headwater streams and emergent freshwater marshes, since published data concerning their role in these systems is considerably more abundant in comparison to other freshwater habitats.  相似文献   

16.
Aquatic hyphomycetes play a key role in leaf litter decomposition and are mediators of organic matter turnover in streams. Molecular studies have shown that some aquatic fungi are also plant endophytes, however, more evidence is needed to evaluate their multiple ecological abilities. To date, little information is available on fungal lineages that might have undergone convergent evolution to adapt to multiple ecological modes. We examined the phylogenetic relationships and evolutionary divergences of aquatic hyphomycetes, endophytic aquatic hyphomycetes and other fungal endophytes of riparian/terrestrial plants by analyzing ITS1-5.8S-ITS2 sequences retrieved from the National Center for Biotechnology Information (NCBI). Sequences with close phylogenetic affinity to aquatic fungi can occur as endophytes of terrestrial plants or in soil far from streams. To fully understand the ecological impact of aquatic hyphomycetes, we need to document and interpret their niches more broadly.  相似文献   

17.
Aquatic hyphomycetes are the main fungal decomposers of plant litter in streams. We compared the importance of substrate (three leaf species, wood) and season on fungal colonization. Substrates were exposed for 12 4-week periods. After recovery, mass loss, fungal biomass and release of conidia by aquatic hyphomycetes were measured. Fungal communities were characterized by counting and identifying released conidia and by extracting and amplifying fungal DNA (ITS2), which was subdivided into phylotypes by denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP). Mass loss, fungal biomass and reproduction were positively correlated with stream temperature. Conidial diversity was highest between May and September. Numbers of different phylotypes were more stable. Principal coordinate analyses (PCO) and canonical analyses of principal coordinates (CAP) of presence/absence data (DGGE bands, T-RFLP peaks and conidial species) showed a clear seasonal trend (Por=0.88). Season was also a significant factor when proportional similarities of conidial communities or relative intensities of DGGE bands were evaluated (P相似文献   

18.
Two collections of submerged wood were made from the Mushroom Research Centre in northern Thailand. One collection comprising 100 samples was made from an artificial lake, which had been made by damming a stream running through a secondary forest. The other collection comprising 90 samples was made from an adjacent non dammed shallow stream running through a similar forest. A total of 68 fungal taxa were recorded during the study and the Shannon–Weiner index (H′) was applied to evaluate the diversities of freshwater fungi. Sørensen’s index (S′) was calculated to evaluate the similarity of different fungal communities. The variation of freshwater fungi on submerged wood between lentic and lotic habitat is discussed and compared with previous studies. A dramatic decrease in species richness and diversity, with significantly changed species composition were observed in the artificial lake as compared to the non dammed stream.  相似文献   

19.
The effect of zinc on leaf decomposition by aquatic fungi was studied in microcosms. Alder leaf disks were precolonized for 15 days at the source of the Este River and exposed to different zinc concentrations during 25 days. Leaf mass loss, fungal biomass (based on ergosterol concentration), fungal production (rates of [1-14C]acetate incorporation into ergosterol), sporulation rates, and species richness of aquatic hyphomycetes were determined. At the source of the Este River decomposition of alder leaves was fast and 50% of the initial mass was lost in 25 days. A total of 18 aquatic hyphomycete species were recorded during 42 days of leaf immersion. Articulospora tetracladia was the dominant species, followed by Lunulospora curvula and two unidentified species with sigmoid conidia. Cluster analysis suggested that zinc concentration and exposure time affected the structure of aquatic hyphomycete assemblages, even though richness had not been severely affected. Both zinc concentration and exposure time significantly affected leaf mass loss, fungal production and sporulation, but not fungal biomass. Zinc exposure reduced leaf mass loss, inhibited fungal production and affected fungal reproduction by either stimulating or inhibiting sporulation rates. The results of this work suggested zinc pollution might depress leaf decomposition in streams due to changes in the structure and activity of aquatic fungi.  相似文献   

20.
Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north‐east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP‐associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号