首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging in birds     
Rodents are the most commonly used model organisms in studies of aging in vertebrates. However, there are species that may suit this role much better. Most birds (Aves), having higher rate of metabolism, live two-to-three times longer than mammals of the same size. This mini-review briefly covers several evolutionary, ecological, and physiological aspects that may contribute to the phenomenon of birds’ longevity. The role of different molecular mechanisms known to take part in the process of aging according to various existing theories, e.g. telomere shortening, protection against reactive oxygen species, and formation of advanced glycation end-products is discussed. We also address some features of birds’ aging that make this group unique and perspective model organisms in longevity studies.  相似文献   

2.
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.  相似文献   

3.
Aging and longevity genes   总被引:6,自引:0,他引:6  
The genetics of aging has made substantial strides in the past decade. This progress has been confined primarily to model organisms, such as filamentous fungi, yeast, nematodes, fruit flies, and mice, in which some thirty-five genes that determine life span have been cloned. These genes encode a wide array of cellular functions, indicating that there must be multiple mechanisms of aging. Nevertheless, some generalizations are already beginning to emerge. It is now clear that there are at least four broad physiological processes that play a role in aging: metabolic control, resistance to stress, gene dysregulation, and genetic stability. The first two of these at least are common themes that connect aging in yeast, nematodes, and fruit flies, and this convergence extends to caloric restriction, which postpones senescence and increases life span in rodents. Many of the human homologs of the longevity genes found in model organisms have been identified. This will lead to their use as candidate human longevity genes in population genetic studies. The urgency for such studies is great: The population is graying, and this research holds the promise of improvement in the quality of the later years of life.  相似文献   

4.
Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time‐dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age‐related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well‐described molecular and cellular hallmarks and discuss physiological changes of aging at the organ‐system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.  相似文献   

5.
The relationship between oxidants and organismal aging was first articulated through the free radical theory of aging. One of the major predictions of the free radical theory of aging is that oxidative stress shortens organisms’ lifespan because of an increased level of oxidants, which are damaging to macromolecules. However, challenging the role of oxidants in age‐related diseases, there is now sufficient evidence that antioxidant supplements do not provide significant health benefits. Interestingly, in addition to an increase in oxidant‐mediated macromolecules damage, there is convincing experimental data to support the role of senescent cells in the process of aging. Here, the current knowledge regarding the role of oxidants and cellular senescence in organismal aging is reviewed and it is proposed that, in addition to the role of oxidants as inducers of macromolecular damage, oxidants may also function as regulators of signaling pathways involved in the establishment of cellular senescence. If this role for oxidants is established, it may be necessary to modify the free radical theory of aging from “Organisms age because cells accumulate reactive oxygen species‐dependent damage over time” to: “Organisms age because cells accumulate oxidants’‐dependent damage and oxidants’‐dependent senescent characteristics over time.”  相似文献   

6.
On the evolutionary origin of aging   总被引:3,自引:0,他引:3  
It is generally believed that the first organisms did not age, and that aging thus evolved at some point in the history of life. When and why this transition occurred is a fundamental question in evolutionary biology. Recent reports of aging in bacteria suggest that aging predates the emergence of eukaryotes and originated in simple unicellular organisms. Here we use simple models to study why such organisms would evolve aging. These models show that the differentiation between an aging parent and a rejuvenated offspring readily evolves as a strategy to cope with damage that accumulates due to vital activities. We use measurements of the age-specific performance of individual bacteria to test the assumptions of the model, and find evidence that they are fulfilled. The mechanism that leads to aging is expected to operate in a wide range of organisms, suggesting that aging evolved early and repeatedly in the history of life. Aging might thus be a more fundamental aspect of cellular organisms than assumed so far.  相似文献   

7.
Ackermann M 《BioTechniques》2008,44(4):564-567
Aging-the decline in an individual's condition over time-is at the center of an active research field in medicine and biology. Some very basic questions have, however, remained unresolved, the most fundamental being: do all organisms age? Or are there organisms that would continue to live forever if not killed by external forces? For a long time it was believed that aging only affected organisms such as animals, plants, and fungi. Bacteria, in contrast, were assumed to be potentially immortal and until recently this assertion remained untested. We used phase-contrast microscopy (on an Olympus BX61) to follow individual bacterial cells over many divisions to prove that some bacteria show a distinction between an aging mother cell and a rejuvenated daughter, and that these bacteria thus age. This indicates that aging is a more fundamental property of organisms than was previously assumed. Bacteria can now be used as very simple model system for investigating why and how organisms age.  相似文献   

8.
Genetic analysis of Drosophil has provided evidence in support of two proposed evolutionary genetic mechanisms of aging: mutation accumulation and antagonistic pleiotropy. Both mechanisms result from the lack of natural selection acting on old organisms. Analyses of large numbers of flies have revealed that mortality rates do not continue to rise with age as previously thought, but plateau at advanced ages. This phenomenon has implications both for models and for definitions of aging, and may be explained by the evolutionary theories. The physiological processes and genes most relevant to aging are being identified using Drosophila lines selected in the laboratory for postponed senescence. Oxidative stress and insufficient metabolic reserves/capacity may be particularly important factors in limiting the fruitfly lifespan. Genes which exhibit aging-related changes in expression are now being identified. Transgenic flies are being used to analyze the mechanisms of such aging-related gene expression, and to test the effects of specific genes on aging and aging-related deterioration.  相似文献   

9.
Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single‐celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age‐related loss of fitness in single‐celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life‐history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single‐celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age‐linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole.  相似文献   

10.
In macroscopic organisms, aging is often obvious; in single-celled organisms, where there is the greatest potential to identify the molecular mechanisms involved, identifying and quantifying aging is harder. The primary results in this area have come from organisms that share the traits of a visibly asymmetric division and an identifiable juvenile phase. As reproductive aging must require a differential distribution of aged and young components between parent and offspring, it has been postulated that organisms without these traits do not age, thus exhibiting functional immortality. Through automated time-lapse microscopy, we followed repeated cycles of reproduction by individual cells of the model organism Escherichia coli, which reproduces without a juvenile phase and with an apparently symmetric division. We show that the cell that inherits the old pole exhibits a diminished growth rate, decreased offspring production, and an increased incidence of death. We conclude that the two supposedly identical cells produced during cell division are functionally asymmetric; the old pole cell should be considered an aging parent repeatedly producing rejuvenated offspring. These results suggest that no life strategy is immune to the effects of aging, and therefore immortality may be either too costly or mechanistically impossible in natural organisms.  相似文献   

11.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

12.
Studies of the basic biology of aging have advanced to the point where anti‐aging interventions, identified from experiments in model organisms, are beginning to be tested in people. Resveratrol and rapamycin, two compounds that target conserved longevity pathways and may mimic some aspects of dietary restriction, represent the first such interventions. Both compounds have been reported to slow aging in yeast and invertebrate species, and rapamycin has also recently been found to increase life span in rodents. In addition, both compounds also show impressive effects in rodent models of age‐associated diseases. Clinical trials are underway to assess whether resveratrol is useful as an anti‐cancer treatment, and rapamycin is already approved for use in human patients. Compounds such as these, identified from longevity studies in model organisms, hold great promise as therapies to target multiple age‐related diseases by modulating the molecular causes of aging.  相似文献   

13.
One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes.  相似文献   

14.
Many different morphological and physiological changes occur during the yeast replicative lifespan. It has been proposed that change is a cause rather than an effect of aging. It is difficult to ascribe causality to processes that manifest themselves at the level of the entire organism, because of their global nature. Although causal connections can be established for processes that occur at the molecular level, their exact contributions are obscured, because they are immersed in a highly interactive network of processes. A top-down approach that can isolate crucial features of aging processes for further study may be a productive avenue. We have mathematically depicted the complicated and random changes that occur in cellular spatial organization during the lifespan of individual yeast cells. We call them budding profiles. This has allowed us to demonstrate that budding profiles are a highly individual characteristic, and that they are correlated with an individual cell's longevity. Additional information can be extracted from our model, indicating that random budding is associated with longevity. This expectation was confirmed, providing new avenues for exploring causal factors in yeast aging. The methodology described here can be readily applied to other aspects of aging in yeast and in higher organisms.  相似文献   

15.
There is a striking link between increasing age and the incidence of cancer in humans. One of the hallmarks of cancer, genomic instability, has been observed in all types of organisms. In the yeast Saccharomyces cerevisiae, it was recently discovered that during the replicative lifespan, aging cells switch to a state of high genomic instability that persists until they die. In considering these and other recent results, we suggest that accumulation of oxidatively damaged protein in aging cells results in the loss of function of gene products critical for maintaining genome integrity. Determining the identity of these proteins and how they become damaged represents a new challenge for understanding the relationship between age and genetic instability.  相似文献   

16.
It is our intention to give the reader a short overview of the relationship between apoptosis and senescence in yeast mother cell-specific aging. We are studying yeast as an aging model because we want to learn something of the basic biology of senescence and apoptosis even from a unicellular eukaryotic model system, using its unrivalled ease of genetic analysis. Consequently, we will discuss also some aspects of apoptosis in metazoa and the relevance of yeast apoptosis and aging research for cellular (Hayflick type) and organismic aging of multicellular higher organisms. In particular, we will discuss the occurrence and relevance of apoptotic phenotypes for the aging process. We want to ask the question whether apoptosis (or parts of the apoptotic process) are a possible cause of aging or vice versa and want to investigate the role of the cellular stress response system in both of these processes. Studying the current literature, it appears that little is known for sure in this field and our review will therefore be, for a large part, more like a memorandum or a program for future research.  相似文献   

17.
David Reznick 《Genetica》1993,91(1-3):79-88
Progress in any area of biology has generally required work on a variety of organisms. This is true because particular species often have characteristics that make them especially useful for addressing specific questions. Recent progress in studying the evolutionary biology of senescence has been made through the use of new species, such asCaenorhabditis elegans andDrosophila melanogaster, because of the ease of working with them in the laboratory and because investigators have used theories for the evolution of aging as a basis for discovering the underlying mechanisms.I describe ways of finding new model systems for studying the evolutionary mechanisms of aging by combining the predictions of theory with existing information about the natural history of organisms that are well-suited to laboratory studies. Properties that make organisms favorable for laboratory studies include having a short generation time, high fecundity, small body size, and being easily cultured in a laboratory environment. It is also desirable to begin with natural populations that differ in their rate of aging. I present three scenarios and four groups of organisms which fulfill these requirements. The first two scenarios apply to well-documented differences in age/size specific predation among populations of guppies and microcrustacea. The third is differences among populations of fairy shrimp (anostraca) in habitat permanence. In all cases, there is an environmentla factor that is likely to select for changes in the life history, including aging, plus a target organism which is well-suited for laboratory studies of aging.  相似文献   

18.
The theory of robustness describes a system level property of evolutionary systems, which predicts tradeoffs of great interest for the systems biology of aging, such as accumulation of non-heritable damage, occurrence of fragilities and limitations in performance, optimized allocation of restricted resources and confined redundancies. According to the robustness paradigm cells and organisms evolved into a state of highly optimized tolerance (HOT), which provides robustness to common perturbations, but causes tradeoffs generally characterized as “robust yet fragile”. This raises the question whether the ultimate cause of aging is more than a lack of adaptation, but an inherent fragility of complex evolutionary systems. Since robustness connects to evolutionary designs, consideration of this theory provides a deeper connection between evolutionary aspects of aging, mathematical models and experimental data. In this review several mechanisms influential for aging are re-evaluated in support of robustness tradeoffs. This includes asymmetric cell division improving performance and specialization with limited capacities to prevent and repair age-related damage, as well as feedback control mechanisms optimized to respond to acute stressors, but unable to halt nor revert aging. Improvement in robustness by increasing efficiencies through cellular redundancies in larger organisms alleviates some of the damaging effects of cellular specialization, which can be expressed in allometric relationships. The introduction of the robustness paradigm offers unique insights for aging research and provides novel opportunities for systems biology endeavors.  相似文献   

19.
Aging and gene expression in the primate brain   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

20.
Reduced mechanistic target of rapamycin (mTOR) signalling extends lifespan in yeast, nematodes, fruit flies and mice, highlighting a physiological pathway that could modulate aging in evolutionarily divergent organisms. This signalling system is also hypothesized to play a central role in lifespan extension via dietary restriction. By collating data from 48 available published studies examining lifespan with reduced mTOR signalling, we show that reduced mTOR signalling provides similar increases in median lifespan across species, with genetic mTOR manipulations consistently providing greater life extension than pharmacological treatment with rapamycin. In contrast to the consistency in changes in median lifespan, however, the demographic causes for life extension are highly species specific. Reduced mTOR signalling extends lifespan in nematodes by strongly reducing the degree to which mortality rates increase with age (aging rate). By contrast, life extension in mice and yeast occurs largely by pushing back the onset of aging, but not altering the shape of the mortality curve once aging starts. Importantly, in mice, the altered pattern of mortality induced by reduced mTOR signalling is different to that induced by dietary restriction, which reduces the rate of aging. Effects of mTOR signalling were also sex dependent, but only within mice, and not within flies, thus again species specific. An alleviation of age‐associated mortality is not a shared feature of reduced mTOR signalling across model organisms and does not replicate the established age‐related survival benefits of dietary restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号