首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorine substitution is a critical enabler for improving the cycle life and energy density of disordered rocksalt (DRX) Li‐ion battery cathode materials which offer prospects for high energy density cathodes, without the reliance on limited mineral resources. Due to the strong Li–F interaction, fluorine also is expected to modify the short‐range cation order in these materials which is critical for Li‐ion transport. In this work, density functional theory and Monte Carlo simulations are combined to investigate the impact of Li–F short‐range ordering on the formation of Li percolation and diffusion in DRX materials. The modeling reveals that F substitution is always beneficial at sufficiently high concentrations and can, surprisingly, even facilitate percolation in compounds without Li excess, giving them the ability to incorporate more transition metal redox capacity and thereby higher energy density. It is found that for F levels below 15%, its effect can be beneficial or disadvantageous depending on the intrinsic short‐range order in the unfluorinated oxide, while for high fluorination levels the effects are always beneficial. Using extensive simulations, a map is also presented showing the trade‐off between transition‐metal capacity, Li‐transport, and synthetic accessibility, and two of the more extreme predictions are experimentally confirmed.  相似文献   

2.
The demand for high energy‐density, mass‐producible cathode materials has spurred the exploration of new material structures and compositions. Lithium‐excess, cation‐disordered rocksalt (DRX) materials are a new class of transition metal oxides that display high capacity and environmental friendly composition. These materials achieve their high capacities partially through oxygen redox, which leads to oxygen loss and detrimental reactivity with the electrolyte. It has previously been shown that oxygen loss can be suppressed by partial substitution of the lattice oxygen for fluorine, but the explicit mechanism behind this effect remains unknown. In this work, differential electrochemical mass spectrometry (DEMS) and titration mass spectrometry are used to quantify the primary electrochemical reactions occurring during the first cycle in DRX materials. Comparing a DRX oxide and a DRX oxyfluoride, it is shown that fluorination limits oxygen redox and suppresses oxygen loss. Additionally, DEMS is coupled with fluoride‐scavenging to demonstrate that small amounts of fluorine dissolve from DRX oxyfluorides during the first cycle. Finally, these techniques are extended over the first several cycles, demonstrating that CO2 evolution persists and fluoride dissolution continues to a diminishing extent during the first few cycles. These findings motivate surface modifications to control interfacial reactivity and improve long‐term cycling.  相似文献   

3.
Fluorination of Li‐ion cathode materials is of significant interest as it is claimed to lead to significant improvements in long‐term reversible capacity. However, the mechanism by which LiF incorporates and improves performance remains uncertain. Indeed, recent evidence suggests that fluorine is often present as a coating layer rather than incorporated into the bulk of the material. In this work, first‐principles calculations are used to investigate the thermodynamics of fluorination in transition metal oxide cathodes to determine the conditions under which bulk fluorination is possible. It is found that unlike classic well‐ordered cathodes, which cannot incorporate fluorine, disordered rock salt‐structured materials achieve significant fluorination levels due to the presence of locally metal‐poor, lithium‐rich environments that are highly preferred for fluorine. As well as explaining the fluorination process in known materials, this finding is encouraging for the development of new disordered rock salt lithium‐excess transition metal oxides, a promising new class of Li‐ion battery cathode materials that offer superior practical capacity to traditional layered oxides. In particular, it is found that bulk fluorination may serve as an alternative source of Li‐excess in these compounds that can replace the conventional substitution of a heavy redox‐inactive element on the transition metal sublattice.  相似文献   

4.
The recent discovery of Li‐excess cation‐disordered rock salt cathodes has greatly enlarged the design space of Li‐ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+‐based cation‐disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2?0.5xO2?xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition‐metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+‐induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn‐redox capacity to the overall capacity.  相似文献   

5.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

6.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   

7.
Lithium–sulfur batteries (LSBs) are considered promising candidates for the next‐generation energy‐storage systems due to their high theoretical capacity and prevalent abundance of sulfur. Their reversible operation, however, encounters challenges from both the anode, where dendritic and dead Li‐metal form, and the cathode, where polysulfides dissolve and become parasitic shuttles. Both issues arise from the imperfection of interphases between electrolyte and electrode. Herein, a new lithium salt based on an imide anion with fluorination and unsaturation in its structure is reported, whose interphasial chemistries resolve these issues simultaneously. Lithium 1, 1, 2, 2, 3, 3‐hexafluoropropane‐1, 3‐disulfonimide (LiHFDF) forms highly fluorinated interphases at both anode and cathode surfaces, which effectively suppress formation of Li‐dendrites and dissolution/shuttling of polysulfides, and significantly improves the electrochemical reversibility of LSBs. In a broader context, this new Li salt offers a new perspective for diversified beyond Li‐ion chemistries that rely on a Li‐metal anode and active cathode materials.  相似文献   

8.
Since the highest occupied molecular orbital (HOMO) level of donors in organic solar cells (OSCs) is being constantly downshifted for achieving high open‐circuit voltage (Voc), a further enhancement of the anode work function (WF) is required. Herein, an effective approach of fluorination is demonstrated to simultaneously improve the WF and transparency for anode interlayer (AIL) material. By fluorination, in combination with the dialysis treatment in LiCl solution, the WF of PCP‐2F‐Li could be significantly enhanced from 4.86 to 5.0 eV, as compared to PCP‐Na. Meanwhile, the transparency of the polymer is also improved. As a result, PCP‐2F‐Li can be used to modify efficient active layers consisting of polymer donors with deep HOMO levels, such as PBDB‐T‐2F:IT‐4F, and an outstanding power conversion efficiency (PCE) of 12.7% is achieved in the corresponding device with a high Voc of 0.84 V. This result represents the highest efficiency for the OSCs using a solution‐processed pH‐neutral AIL, which is beneficial to the low‐cost fabrication of high‐performance OSCs with improved stability. More importantly, PCP‐2F‐Li could be processed by blade coating for making large‐area device of 1 cm2, and a PCE of 10.6% is achieved, bringing a promising prospect for the large‐area device fabrication.  相似文献   

9.
Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na2Mn3O7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn?O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.  相似文献   

10.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

11.
The nonaqueous lithium–oxygen (Li–O2) battery is considered as one of the most promising candidates for next‐generation energy storage systems because of its very high theoretical energy density. However, its development is severely hindered by large overpotential and limited capacity, far less than theory, caused by sluggish oxygen redox kinetics, pore clogging by solid Li2O2 deposition, inferior Li2O2/cathode contact interface, and difficult oxygen transport. Herein, an open‐structured Co9S8 matrix with sisal morphology is reported for the first time as an oxygen cathode for Li–O2 batteries, in which the catalyzing for oxygen redox, good Li2O2/cathode contact interface, favorable oxygen evolution, and a promising Li2O2 storage matrix are successfully achieved simultaneously, leading to a significant improvement in the electrochemical performance of Li–O2 batteries. The intrinsic oxygen‐affinity revealed by density functional theory calculations and superior bifunctional catalytic properties of Co9S8 electrode are found to play an important role in the remarkable enhancement in specific capacity and round‐trip efficiency for Li–O2 batteries. As expected, the Co9S8 electrode can deliver a high discharge capacity of ≈6875 mA h g?1 at 50 mA g?1 and exhibit a low overpotential of 0.57 V under a cutoff capacity of 1000 mA h g?1, outperforming most of the current metal‐oxide‐based cathodes.  相似文献   

12.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

13.
Metal–organic framework derived approaches are emerging as a viable way to design carbon‐confined transitional metal phosphides (TMPs@C) for energy storage and conversion. However, their preparation generally involves a phosphorization using a large amount of additional P sources, which inevitably releases flammable, poisonous PH3. Therefore, developing an efficient strategy for eco‐friendly synthesis of TMPs@C is full of challenges. Here, a metal–organophosphine framework (MOPF) derived strategy is developed to allow an eco‐friendly design of TMPs@C without an additional P source, avoiding release of PH3. To illustrate this strategy, 1,3,5‐triaza‐7‐phosphaadamantane (PTA) ligands and Cu(NO3)2 metal centers are employed to construct Cu/PTA‐MOPFs nanosheets. Cu/PTA‐MOPFs can be directly converted to carbon‐confined Cu3P nanoparticles by annealing. Benefiting from high heteroatom content in PTA, a high doping content of 3.92 at% N and 8.26 at% P can also be achieved in the carbon matrix. As a proof‐of‐concept application, N,P‐codoped carbon‐confined Cu3P nanoparticles as anodes for Na‐ion storage exhibit a high initial reversible capacity of 332 mA h g?1 at 50 mA g?1, and superb rate and cyclic performance. Due to rich coordination modes of organophosphine, MOPFs are expected to become a promising molecular platform for design of various heteroatom‐doped TMPs@C for energy storage and conversion.  相似文献   

14.
A high‐rate of oxygen redox assisted by cobalt in layered sodium‐based compounds is achieved. The rationally designed Na0.6[Mg0.2Mn0.6Co0.2]O2 exhibits outstanding electrode performance, delivering a discharge capacity of 214 mAh g?1 (26 mA g?1) with capacity retention of 87% after 100 cycles. High rate performance is also achieved at 7C (1.82 A g?1) with a capacity of 107 mAh g?1. Surprisingly, the Na0.6[Mg0.2Mn0.6Co0.2]O2 compound is able to deliver capacity for 1000 cycles at 5C (at 1.3 A g?1), retaining 72% of its initial capacity of 108 mAh g?1. X‐ray absorption spectroscopy analysis of the O K‐edge indicates the oxygen‐redox species (O2?/1?) is active during cycling. First‐principles calculations show that the addition of Co reduces the bandgap energy from ≈2.65 to ≈0.61 eV and that overlapping of the Co 3d and O 2p orbitals facilitates facile electron transfer, enabling the long‐term reversibility of the oxygen redox, even at high rates. To the best of the authors' knowledge, this is the first report on high‐rate oxygen redox in sodium‐based cathode materials, and it is believed that the findings will open a new pathway for the use of oxygen‐redox‐based materials for sodium‐ion batteries.  相似文献   

15.
The Li‐rich layer‐structured oxides are regarded one of the most promising candidates of cathode materials for high energy‐density Li‐ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered material is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li‐rich layer‐structured Li1.2Mo0.6Fe0.2O2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In‐depth studies such as aberration‐corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X‐ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. This new strategy provides revelation for the development of the Li‐rich layered oxides with mitigated potential decay and a longer lifespan.  相似文献   

16.
The synthesis and characterization of new semiconducting materials is essential for developing high‐efficiency organic solar cells. Here, the synthesis, physiochemical properties, thin film morphology, and photovoltaic response of ITN‐F4 and ITzN‐F4, the first indacenodithienothiophene nonfullerene acceptors that combine π‐extension and fluorination, are reported. The neat acceptors and bulk‐heterojunction blend films with fluorinated donor polymer poly{[4,8‐bis[5‐(2‐ethylhexyl)‐4‐fluoro‐2‐thienyl]benzo[1,2‐b:4,5‐b′]‐dithiophene‐2,6‐diyl]‐alt‐[2,5‐thiophenediyl[5,7‐bis(2‐ethylhexyl)‐4,8‐dioxo‐4H,8H‐benzo[1,2‐c:4,5‐c′]dithiophene‐1,3‐diyl]]} (PBDB‐TF, also known as PM6) are investigated using a battery of techniques, including single crystal X‐ray diffraction, fs transient absorption spectroscopy (fsTA), photovoltaic response, space‐charge‐limited current transport, impedance spectroscopy, grazing incidence wide angle X‐ray scattering, and density functional theory level computation. ITN‐F4 and ITzN‐F4 are found to provide power conversion efficiencies greater and internal reorganization energies less than their non‐π‐extended and nonfluorinated counterparts when paired with PBDB‐TF. Additionally, ITN‐F4 and ITzN‐F4 exhibit favorable bulk‐heterojunction relevant single crystal packing architectures. fsTA reveals that both ITN‐F4 and ITzN‐F4 undergo ultrafast hole transfer (<300 fs) in films with PBDB‐TF, despite excimer state formation in both the neat and blend films. Taken together and in comparison to related structures, these results demonstrate that combined fluorination and π‐extension synergistically promote crystallographic π‐face‐to‐face packing, increase crystallinity, reduce internal reorganization energies, increase interplanar π–π electronic coupling, and increase power conversion efficiency.  相似文献   

17.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

18.
The derivatives of 1,4‐dimethoxybenzene are thus far the best performing redox shuttle additives for overcharge protection of Li‐ion batteries. The most durable molecules of this kind typically possess two in‐plane methoxy groups that are equivalent by inversion symmetry. However, such geometry leads to a vanishing average dipole moment that causes poor solubility of these molecules in carbonate‐based electrolytes. In this study, a novel redox shuttle additive, 1,2,3,4‐tetrahydro‐6,7‐dimethoxy‐1,1,4,4‐tetramethyl‐naphthalene (TDTN), is introduced. It has been demonstrated that reversible oxidation at 4.05 V versus Li+/Li, high polarity, high solubility (around 0.4 m ), and excellent electrochemical stability (150 overcharge cycles at C/2 rate with 100% overcharge) can all be achieved simultaneously by the imposition of axial symmetry in the corresponding radical cation that is generated by electrochemical oxidation of TDTN in the battery. The intricate interplay between the symmetry and the chemical stability of the radical cation is scrutinized using magnetic resonance spectroscopy and electron structure modeling.  相似文献   

19.
Replacement of specific hydroxyl groups by fluorine in carbohydrates is an ongoing challenge from chemical, biological, and pharmaceutical points of view. A rapid and efficient two-step, regio- and stereoselective synthesis of 2-deoxy-2-(R)-fluoro-beta-d-allose (2-(R)-fluoro-2-deoxy-beta-d-allose; 2-FDbetaA), a fluorinated analogue of the rare sugar, d-allose, is described. TAG (3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol or 3,4,6-tri-O-acetyl-d-glucal), was fluorinated in anhydrous HF with dilute F(2) in a Ne/He mixture or with CH(3)COOF at -60 degrees C. The fluorinated intermediate was hydrolyzed in 1N HCl and the hydrolysis product was purified by liquid chromatography and characterized by 1D (1)H, (13)C, and (19)F NMR spectroscopy as well as 2D NMR spectroscopy and mass spectrometry. In addition, (18)F-labeled 2-deoxy-2-(R)-fluoro-beta-d-allose (2-[(18)F]FDbetaA) was synthesized for the first time, with an overall decay-corrected radiochemical yield of 33+/-3% with respect to [(18)F]F(2), the highest radiochemical yield achieved to date for electrophilic fluorination of TAG. The rapid and high radiochemical yield synthesis of 2-[(18)F]FDbetaA has potential as a probe for the bioactivity of d-allose.  相似文献   

20.
A new concept of multiple redox semi‐solid‐liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI‐S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L?1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi‐functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide‐open opportunities to develop high‐energy‐density flow batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号