首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capacity degradation by phase changes and oxygen evolution has been the largest obstacle for the ultimate commercialization of high‐capacity LiNiO2‐based cathode materials. The ultimate thermodynamic and kinetic reasons of these limitations are not yet systematically studied, and the fundamental mechanisms are still poorly understood. In this work, both phenomena are studied by density functional theory simulations and validation experiments. It is found that during delithiation of LiNiO2, decreased oxygen reduction induces a strong thermodynamic driving force for oxygen evolution in bulk. However, oxygen evolution is kinetically prohibited in the bulk phase due to a large oxygen migration kinetic barrier (2.4 eV). In contrast, surface regions provide a larger space for oxygen migration leading to facile oxygen evolution. These theoretical results are validated by experimental studies, and the kinetic stability of bulk LiNiO2 is clearly confirmed. Based on these findings, a rational design strategy for protective surface coating is proposed.  相似文献   

2.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

3.
Although layered lithium oxides have become the cathode of choice for state‐of‐the‐art Li‐ion batteries, substantial gaps remain between the practical and theoretical energy densities. With the aim of supporting efforts to close this gap, this work reviews the fundamental operating mechanisms and challenges of Li intercalation in layered oxides, contrasts how these challenges play out differently for different materials (with emphasis on Ni–Co–Al (NCA) and Ni–Mn–Co (NMC) alloys), and summarizes the extensive corpus of modifications and extensions to the layered lithium oxides. Particular emphasis is given to the fundamental mechanisms behind the operation and degradation of layered intercalation electrode materials as well as novel modifications and extensions, including Na‐ion and cation‐disordered materials.  相似文献   

4.
Structural changes in Li2MnO3 cathode material for rechargeable Li‐ion batteries are investigated during the first and 33rd cycles. It is found that both the participation of oxygen anions in redox processes and Li+‐H+ exchange play an important role in the electrochemistry of Li2MnO3. During activation, oxygen removal from the material along with Li gives rise to the formation of a layered MnO2‐type structure, while the presence of protons in the interslab region, as a result of electrolyte oxidation and Li+‐H+ exchange, alters the stacking sequence of oxygen layers. Li re‐insertion by exchanging already present protons reverts the stacking sequence of oxygen layers. The re‐lithiated structure closely resembles the parent Li2MnO3, except that it contains less Li and O. Mn4+ ions remain electrochemically inactive at all times. Irreversible oxygen release occurs only during activation of the material in the first cycle. During subsequent cycles, electrochemical processes seem to involve unusual redox processes of oxygen anions of active material along with the repetitive, irreversible oxidation of electrolyte species. The deteriorating electrochemical performance of Li2MnO3 upon cycling is attributed to the structural degradation caused by repetitive shearing of oxygen layers.  相似文献   

5.
Phase transitions play a crucial role in Li‐ion battery electrodes being decisive for both the power density and cycle life. The kinetic properties of phase transitions are relatively unexplored and the nature of the phase transition in defective spinel Li4+xTi5O12 introduces a controversy as the very constant (dis)charge potential, associated with a first‐order phase transition, appears to contradict the exceptionally high rate performance associated with a solid–solution reaction. With the present density functional theory study, a microscopic mechanism is put forward that provides deeper insight in this intriguing and technologically relevant material. The local substitution of Ti with Li in the spinel Li4+xTi5O12 lattice stabilizes the phase boundaries that are introduced upon Li‐ion insertion. This facilitates a subnanometer phase coexistence in equilibrium, which although very similar to a solid solution should be considered a true first‐order phase transition. The resulting interfaces are predicted to be very mobile due to the high mobility of the Li ions located at the interfaces. This highly mobile, almost liquid‐like, subnanometer phase morphology is able to respond very fast to nonequilibrium conditions during battery operation, explaining the excellent rate performance in combination with a first‐order phase transition.  相似文献   

6.
7.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   

8.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

9.
Electrochemical metal‐ion intercalation systems are acknowledged to be a critical energy storage technology. The kinetics of the intercalation processes in transition‐metal based oxides determine the practical characteristics of metal‐ion batteries, such as the energy density, power, and cyclability. With the emergence of post lithium‐ion batteries, such as sodium‐ion and potassium‐ion batteries, which function predominately in nonaqueous electrolytes of special formulation and exhibit quite varied material stability with regard to their surface chemistries and reactivity with electrolytes, the practical routes for the optimization of metal‐ion battery performance become essential. Electrochemical methods offer a variety of means to quantitatively study the diffusional, charge transfer, and phase transformation rates in complex systems, which are, however, rather rarely fully adopted by the metal‐ion battery community, which slows down the progress in rationalizing the rate‐controlling factors in complex intercalation systems. Herein, several practical approaches for diagnosing the origin of the rate limitations in intercalation materials based on phenomenological models are summarized, focusing on the specifics of charge transfer, diffusion, and nucleation phenomena in redox‐active solid electrodes. It is demonstrated that information regarding rate‐determining factors can be deduced from relatively simple analysis of experimental methods including cyclic voltammetry, chronoamperometry, and impedance spectroscopy.  相似文献   

10.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

11.
Li‐rich oxide is a promising candidate for the cathodes of next‐generation lithium‐ion batteries. However, its utilization is restricted by cycling instability and inferior rate capability. To tackle these issues, three‐dimensional (3D), hierarchical, cube‐maze‐like Li‐rich cathodes assembled from two‐dimensional (2D), thin nanosheets with exposed {010} active planes, are developed by a facile hydrothermal approach. Benefiting from their unique architecture, 3D cube‐maze‐like cathodes demonstrate a superior reversible capacity (285.3 mAh g?1 at 0.1 C, 133.4 mAh g?1 at 20.0 C) and a great cycle stability (capacity retention of 87.4% after 400 cycles at 2.0 C, 85.2% after 600 cycles and 75.0% after 1200 cycles at 20.0 C). When this material is matched with a graphite anode, the full cell achieves a remarkable discharge capacity (275.2 mAh g?1 at 0.1 C) and stable cycling behavior (capacity retention of 88.7% after 100 cycles at 5.0 C, capacity retention of 84.8% after 100 cycles at 20.0 C). The present work proposes an accessible way to construct 3D hierarchical architecture assembled from 2D nanosheets with exposed high‐energy active {010} planes and verifies its validity for advanced Li‐rich cathodes.  相似文献   

12.
LiCoO2 electrodes contain three phases, or domains, each having specific‐intended functions: ion‐conducting pore space, lithium‐ion‐reacting active material, and electron conducting carbon‐binder domain (CBD). Transport processes take place in all domains on different characteristic length scales: from the micrometer scale in the active material grains through to the nanopores in the carbon‐binder phase. Consequently, more than one imaging approach must be utilized to obtain a hierarchical geometric representation of the electrode. An approach incorporating information from the micro‐ and nanoscale to calculate 3D transport‐relevant properties in a large‐reconstructed active domain is presented. Advantages of focused ion beam/scanning electron microscopy imaging and X‐ray tomography combined by a spatial stochastic model, validated with an artificially produced reference structure are used. This novel approach leads to significantly different transport relevant properties compared with previous tomographic approaches: nanoporosity of the CBD leads to up to 42% additional contact area between active material and pore space and increases ionic conduction by a factor of up to 3.6. The results show that nanoporosity within the CBD cannot be neglected.  相似文献   

13.
14.
15.
16.
NaVPO4F has received a great deal of attention as cathode material for Na‐ion batteries due to its high theoretical capacity (143 mA h g?1), high voltage platform, and structural stability. Novel NaVPO4F/C nanofibers are successfully prepared via a feasible electrospinning method and subsequent heat treatment as self‐standing cathode for Na‐ion batteries. Based on the morphological and microstructural characterization, it can be seen that the NaVPO4F/C nanofibers are smooth and continuous with NaVPO4F nanoparticles (≈6 nm) embedded in porous carbon matrix. For Na‐storage, this electrode exhibits extraordinary electrochemical performance: a high capacity (126.3 mA h g?1 at 1 C), a superior rate capability (61.2 mA h g?1 at 50 C), and ultralong cyclability (96.5% capacity retention after 1000 cycles at 2 C). 1D NaVPO4F/C nanofibers that interlink into 3D conductive network improve the conductivity of NaVPO4F, and effectively restrain the aggregation of NaVPO4F particles during charge/discharge process, leading to the high performance.  相似文献   

17.
18.
This work introduces an effective, inexpensive, and large‐scale production approach to the synthesis of a carbon coated, high grain boundary density, dual phase Li4Ti5O12‐TiO2 nanocomposite anode material for use in rechargeable lithium‐ion batteries. The microstructure and morphology of the Li4Ti5O12‐TiO2‐C product were characterized systematically. The Li4Ti5O12‐TiO2‐C nanocomposite electrode yielded good electrochemical performance in terms of high capacity (166 mAh g?1 at a current density of 0.5 C), good cycling stability, and excellent rate capability (110 mAh g?1 at a current density of 10 C up to 100 cycles). The likely contributing factors to the excellent electrochemical performance of the Li4Ti5O12‐TiO2‐C nanocomposite could be related to the improved morphology, including the presence of high grain boundary density among the nanoparticles, carbon layering on each nanocrystal, and grain boundary interface areas embedded in a carbon matrix, where electronic transport properties were tuned by interfacial design and by varying the spacing of interfaces down to the nanoscale regime, in which the grain boundary interface embedded carbon matrix can store electrolyte and allows more channels for the Li+ ion insertion/extraction reaction. This research suggests that carbon‐coated dual phase Li4Ti5O12‐TiO2 nanocomposites could be suitable for use as a high rate performance anode material for lithium‐ion batteries.  相似文献   

19.
The γ phase Li3VO4 which possesses higher ionic conductivity is more preferable for lithium ion batteries, but it is only stable at high temperature and would convert to low temperature β phase spontaneously when cooling down. Here, the phase control of Li3VO4 to stabilize its γ phase in room temperature is successfully mediated by introducing proper Si‐doping, and for the first time the electrochemical performances of γ‐Li3VO4 is investigated. It is found that pure γ‐Li3VO4 can be obtained in a doping ratio of x = 0.05–0.15 in Li3+xV1?xSixO4 with addition of excess Li source in synthesis design. The doping mechanism and the energy changes are investigated in detail by using the first principle calculations, it reveals that an interstitial Li+ is formed with doping of Si4+ in Li3VO4 to balance the system charge. When served as an anode, the Si‐doped γ‐Li3VO4 shows much smoothed Li+ insertion/extraction and enhanced cycle stability with only a single pair of redox peaks, which behaves much different with the complex multicouples of redox peaks in typical β‐Li3VO4. These changes in electrochemical performances implies that γ‐Li3VO4 can effectively accommodate Li+ in an easier and more facile way and relieved structure stress during the charge/discharge process.  相似文献   

20.
High‐Ni layered oxide cathodes are considered to be one of the most promising cathodes for high‐energy‐density lithium‐ion batteries due to their high capacity and low cost. However, surfice residues, such as NiO‐type rock‐salt phase and Li2CO3, are often formed at the particle surface due to the high reactivity of Ni3+, and inevitably result in an inferior electrochemical performance, hindering the practical application. Herein, unprecedentedly clean surfaces without any surfice residues are obtained in a representative LiNi0.8Co0.2O2 cathode by Ti‐gradient doping. High‐resolution transmission electron microscopy (TEM) reveals that the particle surface is composed of a disordered layered phase (≈6 nm in thickness) with the same rhombohedra structure as its interior. The formation of this disordered layered phase at the particle surface is electrochemically favored. It leads to the highest rate capacity ever reported and a superior cycling stability. First‐principles calculations further confirm that the excellent electrochemical performance has roots in the excellent chemical/structural stability of such a disordered layered structure, mainly arising from the improved robustness of the oxygen framework by Ti doping. This strategy of constructing the disordered layered phase at the particle surface could be extended to other high‐Ni layered transition metal oxides, which will contribute to the enhancement of their electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号