首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently.  相似文献   

2.
Some chytrids are host‐specific parasiticfungithat may have a considerable impact on phytoplankton dynamics. The phylum Chytridiomycota contains one class, the Chytridiomycetes, and is composed of five different orders. Molecular studies now firmly place the Chytridiomycota within the fungal kingdom. Chytrids are characterized by having zoospores, a motile stage in their life cycle. Zoospores are attracted to the host cell by specific signals. No single physical–chemical factor has been found that fully explains the dynamics of chytrid epidemics in the field. Fungal periodicity was primarily related to host cell density. The absence of aggregated distributions of chytrids on their hosts suggested that their hosts did not vary in their susceptibility to infection. A parasite can only become epidemic when it grows faster than the host. Therefore, it has been suggested that epidemics in phytoplankton populations arise when growth conditions for the host are unfavorable. No support for such a generalization was found, however. Growth of the parasitic fungus Rhizophydium planktonicum Canter emend, parasitic on the diatom Asterionella formosa Hassal, was reduced under stringent nutrient limitation,because production and infectivity of zoospores were affected negatively. A moderate phosphorous or light limitation favored epidemic development, however. Chytrid infections have been shown to affect competition between their algal hosts and in this way altered phytoplankton succession. There is potential for coevolution between Asterionella and the chytrid Zygorhizidium planktonicum Canter based on clear reciprocal fitness costs, absence of overall infective parasite strains, and possibly a genetic basis for host susceptibility and parasite infectivity.  相似文献   

3.
Climate change is expected to favour infectious diseases across ecosystems worldwide. In freshwater and marine environments, parasites play a crucial role in controlling plankton population dynamics. Infection of phytoplankton populations will cause a transfer of carbon and nutrients into parasites, which may change the type of food available for higher trophic levels. Some phytoplankton species are inedible to zooplankton, and the termination of their population by parasites may liberate otherwise unavailable carbon and nutrients. Phytoplankton spring blooms often consist of large diatoms inedible for zooplankton, but the zoospores of their fungal parasites may serve as a food source for this higher trophic level. Here, we investigated the impact of warming on the fungal infection of a natural phytoplankton spring bloom and followed the response of a zooplankton community. Experiments were performed in ca. 1000 L indoor mesocosms exposed to a controlled seasonal temperature cycle and a warm (+4 °C) treatment in the period from March to June 2014. The spring bloom was dominated by the diatom Synedra. At the peak of infection over 40% of the Synedra population was infected by a fungal parasite (i.e. a chytrid) in both treatments. Warming did not affect the onset of the Synedra bloom, but accelerated its termination. Peak population density of Synedra tended to be lower in the warm treatments. Furthermore, Synedra carbon: phosphorus stoichiometry increased during the bloom, particularly in the control treatments. This indicates enhanced phosphorus limitation in the control treatments, which may have constrained chytrid development. Timing of the rotifer Keratella advanced in the warm treatments and closely followed chytrid infections. The chytrids' zoospores may thus have served as an alternative food source to Keratella. Our study thus emphasizes the importance of incorporating not only nutrient limitation and grazing, but also parasitism in understanding the response of plankton communities towards global warming.  相似文献   

4.
We propose a double staining method based on the combination of two fluorochromes, calcofluor white (CFW; specific chitinous fluorochrome) and SYTOX green (nucleic acid stain), coupled to epifluorescence microscopy for counting, identifying, and investigating the fecundity of parasitic fungi of phytoplankton and the putative relationships established between hosts and their chytrid parasites. The method was applied to freshwater samples collected over two successive years during the terminal period of autumnal cyanobacterial blooms in a eutrophic lake. The study focused on the uncultured host-parasite couple Anabaena macrospora (cyanobacterium) and Rhizosiphon akinetum (Chytridiomycota). Our results showed that up to 36.6% of cyanobacterial akinetes could be parasitized by fungi. Simultaneously, we directly investigated the zoosporic content inside the sporangia and found that both the host size and intensity of infection conditioned the final size and hence fecundity of the chytrids. We found that relationships linking host size, final parasite size, and chytrid fecundity were conserved from year to year and seemed to be host-chytrid couple specific. We concluded that our double staining method was a valid procedure for improving our knowledge of uncultured freshwater phytoplankton-chytrid couples and so of the quantitative ecology of chytrids in freshwater ecosystems.  相似文献   

5.
In summer 2014, a toxic Karenia brevis bloom (red tide) occurred in the NE Gulf of Mexico, during which vertical migration of K. brevis has been observed from glider measurements. The current study shows that satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) can capture changes in surface reflectance and chlorophyll concentration occurring within 2 h, which may be attributed this K. brevis vertical migration. The argument is supported by earlier glider measurements in the same bloom, by the dramatic changes in the VIIRS-derived surface chlorophyll, and by the consistency between the short-term reflectance changes and those reported earlier from field-measured K. brevis vertical migration. Estimates using the quasi-analytical algorithm also indicate significant increases in both total absorption coefficient and backscattering coefficient in two hours. The two observations in a day from a single polar-orbiting satellite sensor are thus shown to be able to infer phytoplankton vertical movement within a short timeframe, a phenomenon difficult to capture with other sensors as each sensor can provide at most one observation per day, and cross-sensor inconsistency may make interpretation of merged-sensor data difficult. These findings strongly support geostationary satellite missions to study short-term bloom dynamics.  相似文献   

6.
While surveying chytrid diversity in lakes and streams, we found on cellulosic bait a chytrid that had both monocentric and polycentric thallus forms. We brought this chytrid into axenic culture from three sites in eastern North America, studied its thallus development and zoospore ultrastructure, and compared its 28S rDNA sequence with those of other members of the Chytridiomycota. Thallus morphology matched that described for the rare chytrid, Cladochytrium polystomum Zopf. Sporangia were spherical and produced numerous long discharge tubes. After discharge, zoospores remained in spherical clusters at the tips of the inoperculate openings of discharge tubes. After 10–30 min zoospores either swam away or encysted in place. Zoospore ultrastructural features included a cell coat, flagellar plug, and paracrystalline inclusion, features typical of members of the Chytridiales. However, the flagellar apparatus structure and organellar organization differed from that of zoospores previously described. Based on its molecular phylogeny and its zoospore ultrastructural features, we classify C. polystomum as a member of the Chytridiaceae in the Chytridiales. Because its thallus development and its ribosomal DNA sequences diverged decidedly from those of Cladochytrium tenue Nowak, the type species of Cladochytrium, we erected Zopfochytrium as a new genus for this chytrid.  相似文献   

7.
Because phytoplankton communities exhibit seasonal patterns driven by changes in physical factors, grazing pressure, and nutrient limitations, climate change, in combination with local phosphorus management policies are expected to impact phytoplankton annual dynamic. We used long-term monitoring data from Lake Geneva (from 1974 to 2010) to test if changes in phytoplankton seasonal succession across years is related to re-oligotrophication, inter-annual variability in thermal conditions, and Daphnia sp. density. We used a Bayesian method to identify species assemblages and wavelet analysis to detect transient dynamics in seasonal periodicity. A decrease in phosphorus concentrations appeared to play a major role in the inter-annual replacement of species assemblages. Furthermore, some species assemblages exhibited a change in their seasonal periodicity that was most likely induced by changes in Daphnia sp. density. Finally, we demonstrated that flexibility in the pattern of phytoplankton seasonal successions played a stabilizing role at the community level. The results suggest that phenology and inter-annual changes in seasonal dynamics of phytoplankton assemblages are important components to consider for explaining long-term variability in phytoplankton community.  相似文献   

8.
9.
The seasonal composition of phytoplankton communities was investigatedin a Mediterranean brackish area (Varano lagoon). Twelve stationswere sampled monthly from March 1997 to February 1998. Numbersof prokaryotic and eukaryotic picophytoplankton cells were estimatedby epifluorescence microscopy, while larger phytoplankton (nanoand micro fractions) were enumerated by the Utermöhl settlingtechnique. Picophytoplankton densities ranged from 0.7 to 448.6cells x 106 l–1. Nano- and microphytoplankton abundancesvaried between 0.2 and 7.9 cells x 106 l–1. The picoplanktonfraction was represented mainly by cyanobacteria and the Utermöhlfraction by nano-sized phytoflagellates (56.2%) and diatoms(20.1%). The phytoflagellates had a greater abundance over timewhile diatoms reached the highest densities in summer and fall.In Varano lagoon, phytoplankton development is related to ‘nitrogen-poor'waters and to phosphorus availability. Suspension-feeding bivalves(Mytilus galloprovincialis) are sufficiently abundant to filtera volume equivalent to the volume of Varano lagoon at leastonce daily. These observations suggest that grazing exerts animportant influence on phytoplankton dynamics, mainly on themicro fraction, and that diatoms seem to play an important rolein the food web dynamics of this coastal fishery.  相似文献   

10.
Mysis introductions to the lakes of western North America have shown they are important predators on zooplankton, especially daphnids, and intercept energy flows that would otherwise be available to pelagic fishes. However, understanding of the ecological roles of Mysis within invaded communities following their establishment remains weak. We analyzed zooplankton and phytoplankton data collected from Okanagan Lake, British Columbia, within a time-series framework to evaluate the strength of ecological interactions between Mysis and the other dominant plankton. Top-down effects of Mysis in the plankton community were only detected on cyclopoid copepods and cyanophytes. Mysis dynamics were mostly driven by bottom-up effects from diatoms and from small cladocerans whose dynamics were driven primarily by the abundance of edible phytoplankton. This result supports the growing appreciation of the importance of omnivory in mysids and was consistent between the two main basins of the lake. We also analyzed published stable C and N isotope data from the plankton of Okanagan Lake with an isotope mixing model to estimate the relative importance of various potential energy sources to Mysis. This analysis supported the time-series results suggesting the importance of diatoms and small zooplankton to Mysis. However, the isotopes also suggested important resource flows from Daphnia to Mysis, an interaction not detected in the time-series analysis. Taken together, these results suggest that Mysis is a strong interactor in the Okanagan Lake food web, relying in part on energy flow through Daphnia. However, subsidies from diatoms likely decouple seasonal Mysis population dynamics from the seasonal population dynamics of Daphnia.  相似文献   

11.
Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments.  相似文献   

12.
Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids). However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes), spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by “mechanistic fragmentation” following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.  相似文献   

13.
14.
15.
Diatoms of the genus Skeletonema were found in bottle samples of phytoplankton that were collected in Paris Bay (Bosfor-Vostochny Strait, the Sea of Japan) in June–December 2013 at a water temperature of–1.8 to 21.6°C and a salinity of 25.4–33.2‰. Using electron microscopy, we identified the predominant species of the autumn phytoplankton bloom as S. marinoi Sarno et Zingone. This is the first find of the species in the marine waters of Russia. The morphology of S. marinoi is described; further data on its ecology and distribution are provided.  相似文献   

16.
To investigate the occurrence of the chytrid fungus Batrachochytrium dendrobatidis in Brazil, we conducted histological screenings of 96 preserved specimens of anurans collected at 10 sites in the Atlantic rain forest. Data show this fungus to be widely distributed. Infected specimens included Colostethus olfersioides (Dendrobatidae), Bokermannohyla gouveai and Hypsiboas freicanecae (Hylidae), as well as Thoropa miliaris and Crossodactylus caramaschii (Leptodactylidae), extending the area of B. dendrobatidis occurrence in Brazil approximately 1,600 km N, 200 km S, and 270 km E. The altitudinal range of the chytrid is broad, spanning from less than 100 m (Estação Ecológica Juréia-Itatins, Reserva Biológica do Tinguá) to about 2,400 m (Parque Nacional do Itatiaia). An infection record dating to 1981 roughly coincides with the time of the first observations of amphibian declines in the country. Widespread occurrence of B. dendrobatidis in the Atlantic Forest adds to the challenge of conserving an already endangered biome given the potential risk of further local biodiversity loss. Further research is needed to understand how environmental and genetic factors relate to chytridiomycosis in leading to or preventing local die-offs. Protected sites at mid and high elevations may be particularly threatened, while lowland populations may be functioning as reservoirs. Conservation efforts should also involve monitoring studies and habitat protection.  相似文献   

17.
《农业工程》2022,42(6):670-678
The research objective was to describe the distribution of phytoplankton community structure and corelated to the physic-chemical parameters at fishing ground, Banyuasin estuarine waters. The methodology of research was phytoplankton sampling; physicochemical waters parameters data collected such as; dissolved oxygen, pH, temperature, brightness, salinity, current speed, nitrate, and phosphate. Identifications and calculations phytoplankton are based on photography under a light microscope. Data were analyzed by calculated abundance, diversity (H′ index) and dominance (C index), and Principal Component Analysis (PCA). There were 24 species of phytoplankton on the all-observation station grouped in three classes, Bacillariophyceae 91.3%, Dinophyceae 9%, and Cyanophyceae 0.1%. The abundance of phytoplankton species obtained in the range of 666.48 to 184,592.68 cells L?1, were mostly found in high Chaetoceros affinis and Bacteriastrum furcatum. The distribution of phytoplankton abundance in these waters was found to be more influenced by seawater mass than freshwater. Phytoplankton diversity is considered a moderate category (1.37 < H′ < 2.57), and there were no species of phytoplankton that dominates (C < 0.5). Principal component analyzes showed that waters can be classified based on their physical-chemical characteristics, which were temperature, salinity, pH, transparency, current speed in the south coast around river estuaries, while DO and nutrients on the north coast of the waters. Based on the distribution of phytoplankton abundance is illustrated that the northern part is more potential for fishing area than the southern part with an abundance of phytoplankton >90,000 cells L?1 and more stable water dynamics.  相似文献   

18.
Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.  相似文献   

19.
Lake Taihu has been severely eutrophied during the last few decades and dense cyanobacterial blooms have led to a decrease in phytoplankton diversity. The cyanobacterial blooms in Lake Taihu were mainly composed of unicellular colony-forming Microcystis and filamentous heterocystous Dolichospermum (formerly known as planktonic species of Anabaena). In contrast to that of Microcystis spp., the fundamental knowledge about diversity, abundance and dynamics of Dolichospermum populations in Lake Taihu is lacking. The present study was conducted to understand genotypic distribution, dynamics and succession of Dolichospermum populations in Lake Taihu. By sequencing 688 internal transcribed spacer (ITS) regions between the 16S and 23S rRNA genes of Dolichospermum, we were able to confirm that all the sequences were Dolichospermum rather than Aphanizomenon. 118 different genotypes were identified from the obtained sequences, and two genotypes (W-type and L-type) were found to dominate in the lake, representing 36.6% and 26.2% of the total sequences, respectively. These two dominant genotypes of Dolichospermum displayed the significant seasonal pattern. Stepwise regressions analysis revealed that water temperature was associated with the two dominant genotypes. The combined results implied the possible existence of ecotypes in bloom-forming cyanobacteria, probably triggered by water temperature in the lake.  相似文献   

20.
Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world''s oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号