首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Pliocene benthic foraminiferal fauna containing a previously unknown species association was found in the basal section of a piston core collected from the crest of Northwind Ridge (NWR) in the central Arctic Ocean. The fauna is dominated by Epistominella exigua, Cassidulina reniforme, Eponides tumidulus, Cibicides scaldisiensis, Lagena spp., Cassidulina teretis, Eponides weddellensis, Bolivina arctica, and Patellina corrugata. The presence of Cibicides scaldisiensis in the assemblage and the occurrence of Cibicides grossus higher in the core are indicative of an early Pliocene age. The morphologically distinctive species Cibicidoides sp. 795 of McNeil (in press) which occurs in the NWR core sample was previously known only from Oligocene through Miocene deposits in the Beaufort-Mackenzie Basin of Arctic Canada. Ehrenbergina sp. A and Cibicidoides aff. C. sp. 795, also present in the core, are new and endemic to the Arctic late Miocene and early Pliocene. These species, and possibly others, are survivors of the late Miocene (Messinian) sea-level crisis, which caused a significant faunal turnover in the Arctic Ocean. The predominantly calcareous assemblage indicates deposition above the calcium carbonate compensation depth in an upper bathyal environment. Paleogeographic affinities for the bulk of the assemblage indicate probable connections between the Arctic and the North Atlantic Oceans, but the endemic species identify environmental differences or partial isolation of the western Arctic Ocean. The species association suggests a cold but milder paleoclimate than that which existed during Pleistocene glacial intervals.  相似文献   

2.
Species are redistributing globally in response to climate warming, impacting ecosystem functions and services. In the Barents Sea, poleward expansion of boreal species and a decreased abundance of Arctic species are causing a rapid borealization of the Arctic communities. This borealization might have profound consequences on the Arctic food web by creating novel feeding interactions between previously non co‐occurring species. An early identification of new feeding links is crucial to predict their ecological impact. However, detection by traditional approaches, including stomach content and isotope analyses, although fundamental, cannot cope with the speed of change observed in the region, nor with the urgency of understanding the consequences of species redistribution for the marine ecosystem. In this study, we used an extensive food web (metaweb) with nearly 2,500 documented feeding links between 239 taxa coupled with a trait data set to predict novel feeding interactions and to quantify their potential impact on Arctic food web structure. We found that feeding interactions are largely determined by the body size of interacting species, although species foraging habitat and metabolic type are also important predictors. Further, we found that all boreal species will have at least one potential resource in the Arctic region should they redistribute therein. During 2014–2017, 11 boreal species were observed in the Arctic region of the Barents Sea. These incoming species, which are all generalists, change the structural properties of the Arctic food web by increasing connectance and decreasing modularity. In addition, these boreal species are predicted to initiate novel feeding interactions with the Arctic residents, which might amplify their impact on Arctic food web structure affecting ecosystem functioning and vulnerability. Under the ongoing species redistribution caused by environmental change, we propose merging a trait‐based approach with ecological network analysis to efficiently predict the impacts of range‐shifting species on food webs.  相似文献   

3.
This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia.  相似文献   

4.
Chorological structure of ichthyofauna of the Arctic Region is described. Distribution patterns of 504 fish-like vertebrates and fish species are characterized. One hundred and eighty-nine range types are defined, which are combined into eight main categories: 1—Arctic; 2—Atlantic-Arctic; 3—transitional subarctic zone of Atlantic sector; 4—Pacific-Arctic; 5—transitional subarctic subarctic zone of Pacific sector, 6—Pacific-Atlantic (amphiboreal); 7—bipolar; 8—continental (fresh and brackish waters). Arctic and boreal regions are bordered by transitional (subarctic) zones, which are the areas of intermutual penetration of faunas. The distribution of most fish species that penetrate into to the Arctic Region from the southern areas is limited by these transitional zones. The benthic fish species prevail in the group of autochthonous Arctic species (which includes 64 species or 14% of marine fauna). The demersal fauna of the Arctic preudoabyssal is presented by endemic species. Ten variations of amphiboreal distribution patterns are revealed. Three areas may be defined within the Atlantic-subarctic zone in regard to the fish fauna and range types, i.e., Labrador-Greenland region, the Barents Sea region, and Icelandic (transitional) region.  相似文献   

5.
Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment.  相似文献   

6.
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.  相似文献   

7.
The Arctic is geologically and biogeographically young, and the origin of its seaweed flora has been widely debated. The Arctic littoral biogeographic region dates from the latest Tertiary and Pleistocene. Following the opening of Bering Strait, about 3.5 mya, the “Great Trans‐Arctic Biotic Interchange” populated the Arctic with a fauna strongly dominated by species of North Pacific origin. The Thermogeographic Model (TM) demonstrates why climate and geography continued to support this pattern in the Pleistocene. Thus, Arctic and Atlantic subarctic species of seaweeds are likely to be evolutionarily “based” in the North Pacific, subarctic species are likely to be widespread in the warmer Arctic, and species of Atlantic Boreal or warmer origin are unlikely in the Arctic and Subarctic. Although Arctic seaweeds have been thought to have a greater affinity with the North Atlantic, we have reanalyzed the Arctic endemic algal flora, using the Thermogeographic Model and evolutionary trees based on molecular data, to demonstrate otherwise. There are 35 congeneric species of the six, abundant Arctic Rhodophyta that we treat in this paper; 32 of these species (91%) occur in the North Pacific, two species (6%) occur in the Boreal or warmer Atlantic Ocean, and a single species is panoceanic, but restricted to the Subarctic. Laminaria solidungula J. Agardh, a kelp Arctic “endemic” species, has 18 sister species. While only eleven (61%) occur in the North Pacific, this rapidly dispersing and evolving genus is a terminal member of a diverse family and order (Laminariales) widely accepted to have evolved in the North Pacific. Thus, both the physical/time‐based TM and the dominant biogeographic pattern of relatives of Arctic macrophytes suggest strong compliance with the evidence of zoology, geology, and paleoclimatology that the Arctic marine flora is largely of Pacific origin.  相似文献   

8.
Using the example of a model group of macromycete (clavarioid fungi), a large-scale investigation into the mycological complex of the Eurasian Arctic is conducted. The species composition of clavarioid fungi’s complex is revealed in all longitudinal sectors and latitudinal subzones, and a comparative analysis is carried out. It has been determined that, among groups of aphyllophoroid fungi, the clavarioid life form is the most adapted to the extremally psychrophilic conditions of the Arctic. It is shown that the near-oceanic sectors are the richest, whereas the continental sectors are much poorer. The distribution of the species composition of fungi conforms to the similar distribution of flowering plants, especially hemicryptophytes. The average annual quantity of atmospheric precipitation is the leading climatic factor. The differences make it possible to subdivide the Eurasian Arctic into four mycogeographical regions: Atlantic (European), Siberian, Chukotian (Beringian), and High Arctic.  相似文献   

9.
The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty‐first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non‐native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non‐native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink.  相似文献   

10.
Fungi are ubiquitous in Arctic soils, where they function as symbionts and decomposers and may affect the carbon balance of terrestrial ecosystems subjected to climate change, and yet little is known about soil fungi at high latitudes. Here we review data from recent molecular studies to determine broad patterns in Arctic soil fungal ecology. The data indicate comparatively high fungal diversity in Arctic soils, with currently no evidence for lower species richness at higher latitudes. The dominant fungi, and particularly ectomycorrhizal-forming fungi, appear to be cosmopolitan species. Arctic soil fungi are capable of growth at sub-zero temperatures, melanized forms are frequent, host specificity is low and there is evidence that community composition alters under experimental warming. Future challenges are to determine the drivers of fungal diversity, whether or not diversity alters at higher latitudes and how apparently cosmopolitan fungi are able to survive the extreme environments encountered in Arctic habitats.  相似文献   

11.
Abstract: The progress in the floristic study of the circumpolar Arctic since the 1940s is summarized and a new floristic division of this region is presented. The treeless areas of the North Atlantic and North Pacific with an oceanic climate, absence of permafrost and a very high proportion of boreal taxa are excluded from the Arctic proper. It is argued that the Arctic deserves the status of a floristic region. The tundra zone and some oceanic areas are divided into subzones according to their flora and vegetation. Two groups of subzones are recognized: the Arctic group (including the Arctic tundras proper and the High Arctic) and the Hypoarctic group. The Arctic phytochorion is floristically divided into sectors: 6 provinces and 20 subprovinces reflecting the regional features of each sector in connection with flora history, physiography and continentality-oceanity of the climate. Each sector is described and differentiated by a set of differential and co-differential species. The peculiarities of the Arctic flora are manifest in different ways in the various sectors, and endemism is not the universal criterion for subdivision.  相似文献   

12.
The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today''s Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.  相似文献   

13.
One hundred and three specimens of juvenile and mature one-tentacle, relatively small-sized hydromedusae of unclear systematic position were found in the zooplankton collections from the Arctic Ocean. Examination of the mature specimens led to the conclusion that their morphology fits with the last diagnoses of the genus Rhabdoon (Anthomedusae) and that they belong to the species named here as R. reesi. The study of the morphology and cnidome composition of immature medusae suggested them to be young stages of the same species. The comparative study of these juvenile forms with Yakovia polinae, the medusae described previously from the Arctic as a new genus and new species, suggested Y. polinae to be a junior synonym of R. reesi. The distribution of R. reesi in the Arctic Ocean is mapped according to recent and historical records.  相似文献   

14.
A total of 228 bryozoan species are recorded within the EEZ of the Faroe Islands, 74 of which are new to the area. Analysis of the distribution of the species among six sectors, each characterized by different environmental conditions, showed three faunal assemblages. Variation of the total Faroese bryozoan fauna and of the bryozoan fauna of most sectors, demonstrated significant negative relationships with depth. In general, analysis of the biogeographic composition showed a strong predominance of boreal over arctic species. However, with respect to faunas of each sector, the Norwegian Basin is characterized by a predominance of arctic species and may be regarded as a part of the Arctic Eurasian sub-region of the Arctic biogeographic region. Comparison of the bryozoan species of each sector with the bryozoan faunas of the other 12 areas in the North Atlantic and the neighbouring Arctic regions showed that only the Faroese shelf fauna has significant similarity with part of them, and thus can be regarded as part of the Scandinavian province of the Norwegian high-boreal sub-region of the Atlantic boreal region. Three sectors, the Faroese–Iceland Ridge, the Faroese–Shetland Channel and Norwegian Basin, belong to a transitional zone between the Atlantic Boreal and the Arctic biogeographic regions. The deep south-western sector forms a separate faunal cluster when compared with both the other sectors within the Faroese area and with the faunas of other large geographic areas, and may be regarded as a separate biogeographic zone of the Boreal Atlantic region due to its high proportion of specific species.  相似文献   

15.
A “trigger” substance was again indicated to be present in sera of hibernating animals. Sera from the hibernating 13-lined ground squirrel, hibernating woodchuck, hibernating Arctic ground squirrel, and hibernating Arctic marmot were all capable of inducing the 13-lined ground squirrel to hibernate in the summer, a season when that species would normally be active. The hibernation trigger is thus not species specific. It is effective whether drawn from these two Arctic species of hibernators or drawn from these two species of hibernators from the midwestern states. The normothermic Arctic marmot appears to have an “anti-trigger” substance in its serum in the summer, which impedes fall hibernation in the transfused 13-lined ground squirrel. This is similar to the anti-trigger observed in the summer serum of active 13-lined ground squirrels and active woodchucks. With respect to hypothermia, it was induced in Artic marmots and in Arctic foxes at Point Barrow, Alaska, in summer. Though in such cases body temperatures fell significantly (as in hibernation), no trigger was recovered from their hypothermic sera that could be shown to be capable of inducing summer hibernation in the ground squirrel. Neither was anti-trigger found in the serum of hypothermic experimentals. These latter experiments thus suggest that the release of trigger into the blood during hibernation is dependent on a mechanism more complex than simply lowering body temperature.  相似文献   

16.
17.
Reassessing the nitrogen relations of Arctic plants: a mini-review   总被引:7,自引:2,他引:5  
The Arctic is often assumed to be an NH4+-dominated ecosystem. This review assesses the validity of this assumption. It also addresses the question of whether Arctic plant growth is limited by the ability to use the forms of nitrogen that are available. The review demonstrates that several sources of soil nitrogen are available to Arctic plants, including soluble organic nitrogen (e.g. glycine, aspartic acid and glutamic acid), NH4+ and NO?3. In mesic Arctic soils, soluble organic nitrogen is potentially more important than either NH+4 or NO?3. Many Arctic species are capable of taking up soluble organic nitrogen (either directly and/or in association with ectomycorrhizae), with the greatest potential for soluble organic nitrogen uptake being exhibited by deciduous species. The ability to take up soluble organic nitrogen may enable some Arctic plants to avoid nitrogen limitations imposed by the slow rate of organic matter decomposition. NO?3 is also present in many Arctic soils, especially calcareous soils and soils near flowing water, animal burrows and bird cliffs. Arctic species characteristic of mesic and xeric habitats are capable of taking up and assimilating NO?3. Even when present in lower concentrations in soils than NH+4, NO?3 is still an important source of nitrogen for some Arctic plants. Arctic-plants therefore have a variety of nitrogen sources available to them, and are capable of using those nitrogen sources. Taken together, these findings demonstrate that the Arctic is not an NH+4dominated ecosystem. Symbiotic fixation of atmospheric N2 does not appear to be an important source of nitrogen for Arctic plants. The reliance of Arctic plants on internal recycling of nitrogen substantially reduces their dependence on soil nitrogen uptake (this is particularly the case for slow-growing evergreens). Despite the high level of internal nitrogen recycling, Arctic plant growth remains limited by the low levels of available soil nitrogen. However, Arctic plant growth is not limited by an inability to utilize any of the available forms of nitrogen. The potential effects of climatic warming on nitrogen availability and use are discussed. The question of whether the Arctic ecosystem is uniquely different from temperate nitrogen-deficient ecosystems is also assessed.  相似文献   

18.
Stable coexistence of Arctic charr and whitefish does occur in a number of native lake fish communities in Scandinavia. Even so, whitefish introductions into Arctic charr lakes have resulted in serious decline and possibly local extinction of Arctic charr. In this article, we analyze the habitat use and diet of the two species in five Norwegian lakes differing in basin shape and environmental conditions. In two of the lakes, both species are native, and appear to live in a relatively stable coexistence. Here, whitefish mainly occupy the littoral and upper pelagic zone, while Arctic charr live in the deeper habitats. Diets are generally quite different in terms of the zooplankton species eaten. In the three other lakes, either whitefish or both species have been introduced. In the shallowest lake, habitat segregation is similar to that seen in the pristine lakes, although Arctic charr appears to be on the brink of extinction. In the remaining two lakes, however, Arctic charr dominates, and occurs in higher numbers than whitefish in all the habitats. Our observations indicate that coexistence of the two species in oligotrophic and relatively pristine lakes requires an extensive profundal zone to serve as a refugium for Arctic charr. If the littoral zone is rendered inaccessible or unprofitable for whitefish due to dominance of a third competitor or predator, or as a result of lake regulation, then Arctic charr may be the dominant species.  相似文献   

19.
New data on the diversity pattern of isopods (Crustacea) from the northern most part of the North Atlantic and the Arctic Oceans is presented. The pattern of diversity with depth is similar at depths <1000m, but differs considerably below about 1000m. In the Arctic the diversity of isopods (expressed both as numbers of species per sled and expected number of species) increased with increased depth to a maximum at depths of about 320 to 1100m, but then declined towards deeper waters. There was a significant increase in numbers per sled and in the expected number of species with increased depth in the northernmost part of the North Atlantic Ocean. Additionally, changes occurred in the relative composition of the shallow and deep water fauna, with asellote isopods being relatively larger part of the isopod fauna in the Arctic than in the northern most part of the North Atlantic. This indicates major faunistic changes occurring at the Greenland-Iceland-Faeroe Ridge, possibly caused by rapid changes in the temperature. Furthermore, that the low diversity of the Arctic deep-sea is a regional phenomenon, and not a part of a large scale latitudinal pattern in the North Atlantic.  相似文献   

20.
Examination of 31 nests of 6 common passerine bird species collected on the Seven Islands Archipelago (the Barents Sea) revealed 25 species of gamasid mites. Most of them belonged to the widespread free-living species commonly occurring in the neighboring taiga and southern tundra areas. There were practically no true Arctic forms among the gamasids found; by contrast, the local flora consisted almost by half of Arctic and Hypoarctic species. The findings of only one species, Neoseiulus cf. tobon, appear to be restricted to the Arctic, while the range of the rare parthenogenetic Iphidinychus gaieri may be restricted to Hypoarctic and mountainous regions of Eurasia. No bird parasites were recorded. Host specificity of the mite assemblages of the nests was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号