首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2 phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.  相似文献   

2.
All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm2.  相似文献   

3.
Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1?xSnxIBr2 perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2 with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a high Voc of 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.  相似文献   

4.
Unlike Pb‐based perovskites, it is still a challenge for realizing the targets of high performance and stability in mixed Pb–Sn perovskite solar cells owing to grain boundary traps and chemical changes in the perovskites. In this work, proposed is the approach of in‐situ tin(II) inorganic complex antisolvent process for specifically tuning the perovskite nucleation and crystal growth process. Interestingly, uniquely formed is the quasi‐core–shell structure of Pb–Sn perovskite–tin(II) complex as well as heterojunction perovskite structure at the same time for achieving the targets. The core–shell structure of Pb–Sn perovskite crystals covered by a tin(II) complex at the grain boundaries effectively passivates the trap states and suppresses the nonradiative recombination, leading to longer carrier lifetime. Equally important, the perovskite heterostructure is intentionally formed at the perovskite top region for enhancing the carrier extraction. As a result, the mixed Pb–Sn low‐bandgap perovskite device achieves a high power conversion efficiency up to 19.03% with fill factor over 0.8, which is among the highest fill factor in high‐performance Pb–Sn perovskite solar cells. Remarkably, the device fail time under continuous light illumination is extended by over 18.5‐folds from 30 to 560 h, benefitting from the protection of the quasi‐core–shell structure.  相似文献   

5.
In the past few years, organic–inorganic metal halide ABX3 perovskites (A = Rb, Cs, methylammonium, formamidinium (FA); B = Pb, Sn; X = Cl, Br, I) have rapidly emerged as promising materials for photovoltaic applications. Tuning the film morphology by various deposition techniques and additives is crucial to achieve solar cells with high performance and long‐term stability. In this work, carbon nanoparticles (CNPs) containing functional groups are added to the perovskite precursor solution for fabrication of fluorine‐doped tin oxide/TiO2/perovskite/spiro‐OMeTAD/gold devices. With the addition of CNPs, the perovskite films are thermally more stable, contain larger grains, and become more hydrophobic. NMR experiments provide strong evidence that the functional groups of the CNPs interact with FA cations already in the precursor solution. The fabricated solar cells show a power‐conversion efficiency of 18% and negligible hysteresis.  相似文献   

6.
Mixed iodide‐bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite‐silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal‐photostability of wide‐bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA‐modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open‐circuit voltage (V oc) of 1.24 V.  相似文献   

7.
The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.  相似文献   

8.
Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13 perovskite has a narrower bandgap, less distorted inorganic framework, and larger Pb? I? Pb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13 films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13 cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.  相似文献   

9.
Adding cesium (Cs) and rubidium (Rb) cations to FA0.83MA0.17Pb(I0.83Br0.17)3 hybrid lead halide perovskites results in a remarkable improvement in solar cell performance, but the origin of the enhancement has not been fully understood yet. In this work, time‐of‐flight, time‐resolved microwave conductivity, and thermally stimulated current measurements are performed to elucidate the impact of the inorganic cation additives on the trap landscape and charge transport properties within perovskite solar cells. These complementary techniques allow for the assessment of both local features within the perovskite crystals and macroscopic properties of films and full devices. Strikingly, Cs‐incorporation is shown to reduce the trap density and charge recombination rates in the perovskite layer. This is consistent with the significant improvements in the open‐circuit voltage and fill factor of Cs‐containing devices. By comparison, Rb‐addition results in an increased charge carrier mobility, which is accompanied by a minor increase in device efficiency and reduced current–voltage hysteresis. By mixing Cs and Rb in quadruple cation (Cs‐Rb‐FA‐MA) perovskites, the advantages of both inorganic cations can be combined. This study provides valuable insights into the role of these additives in multiple‐cation perovskite solar cells, which are essential for the design of high‐performance devices.  相似文献   

10.
Organic–inorganic halide perovskites are promising materials for next‐generation photovoltaic device due to their attractive photoelectrical properties such as strong light absorption, high carrier mobility, and tunable bandgap. Generally, perovskite solar cells require carrier transport layers (CTL) to provide a built‐in electric field and reduce the recombination rate. However, the construction of suitable electron‐ and hole‐transport layers is not cost effective, impairing the commercial application of the devices. An n–p perovskite homojunction absorber with a graded bandgap is developed by introducing a three‐step dynamic spin‐coating strategy and variable valence Sn elements. The bandgap of the perovskite absorber is gradually manipulated from 1.53 eV (the bottom) to 1.27 eV (the top). The electronic behavior is also transformed from n‐type (excess PbI2, the bottom) to p‐type (Sn vacancy, the top) in a very short distance (50 nm). This designed perovskite homojunction electronic structure not only expands the light harvesting range from 800 to 970 nm which provides potential to break the PCE limits, but also promotes oriented carrier transportation and weakens the dependence on CTL. The demonstrated asymmetrical active layer shows a brand‐new approach to simplify the device structure and boost the performance of CTL‐free perovskite solar cells.  相似文献   

11.
2D Ruddlesden–Popper (RP) perovskites have recently emerged as promising candidates for hybrid perovskite photovoltaic cells, realizing power‐conversion efficiencies (PCEs) of over 10% with technologically relevant stability. To achieve solar cell performance comparable to the state‐of‐the‐art 3D perovskite cells, it is highly desirable to increase the conductivity and lower the optical bandgap for enhanced near‐IR region absorption by increasing the perovskite slab thickness. Here, the use of the 2D higher member (n = 5) RP perovskite (n‐butyl‐NH3)2(MeNH3)4Pb5I16 in depositing highly oriented thin films from dimethylformamide/dimethylsulfoxide mixtures using the hot‐casting method is reported. In addition, they exhibit superior environmental stability over thin films of their 3D counterpart. These films are assembled into high‐efficiency solar cells with an open‐circuit voltage of ≈1 V and PCE of up to 10%. This is achieved by fine‐tuning the solvent ratio, crystal growth orientation, and grain size in the thin films. The enhanced performance of the optimized devices is ascribed to the growth of micrometer‐sized grains as opposed to more typically obtained nanometer grain size and highly crystalline, densely packed microstructures with the majority of the inorganic slabs preferentially aligned out of plane to the substrate, as confirmed by X‐ray diffraction and grazing‐incidence wide‐angle X‐ray scattering mapping.  相似文献   

12.
The excellent optoelectronic properties demonstrated by hybrid organic/inorganic metal halide perovskites are all predicated on precisely controlling the exact nucleation and crystallization dynamics that occur during film formation. In general, high‐performance thin films are obtained by a method commonly called solvent engineering (or antisolvent quench) processing. The solvent engineering method removes excess solvent, but importantly leaves behind solvent that forms chemical adducts with the lead‐halide precursor salts. These adduct‐based precursor phases control nucleation and the growth of the polycrystalline domains. There has not yet been a comprehensive study comparing the various antisolvents used in different perovskite compositions containing cesium. In addition, there have been no reports of solvent engineering for high efficiency in all‐inorganic perovskites such as CsPbI3. In this work, inorganic perovskite composition CsPbI3 is specifically targeted and unique adducts formed between CsI and precursor solvents and antisolvents are found that have not been observed for other A‐site cation salts. These CsI adducts control nucleation more so than the PbI2–dimethyl sulfoxide (DMSO) adduct and demonstrate how the A‐site plays a significant role in crystallization. The use of methyl acetate (MeOAc) in this solvent engineering approach dictates crystallization through the formation of a CsI–MeOAc adduct and results in solar cells with a power conversion efficiency of 14.4%.  相似文献   

13.
All‐inorganic cesium lead halide (CsPbX3) perovskites have emerged as promising photovoltaic materials owing to their superior thermal stability compared to traditional organic–inorganic hybrid counterparts. However, the CsPbX3 perovskites generally need to be prepared at high‐temperature, which restricts their application in multilayer or flexible solar cells. Herein, the formation of CsPbX3 perovskites at room‐temperature (RT) induced by dimethylsulphoxide (DMSO) coordination is reported. It is further found that a RT solvent (DMSO) annealing (RTSA) treatment is valid to control the perovskite crystallization dynamics, leading to uniform and void‐free films, and consequently a maximum power conversion efficiency (PCE) of 6.4% in the device indium tin oxide (ITO)/NiO x /RT‐CsPbI2Br/C60/Bathocuproine (BCP)/Ag, which is, as far as it is known, the first report of RT solution‐processed CsPbX3‐based perovskite solar cells (PSCs). Moreover, the efficiency can be boosted up to 10.4% by postannealing the RTSA‐treated perovskite film at an optimal temperature of 120 °C. Profiting from the moderate temperature, flexible PSCs are also demonstrated with a maximum PCE of 7.3% for the first time. These results may stimulate further development of all‐inorganic CsPbX3 perovskites and their application in flexible electronics.  相似文献   

14.
Here, a simple and generally applicable method of fabricating efficient and stable Pb‐Sn binary perovskite solar cells (PVSCs) based on a galvanic displacement reaction (GDR) is demonstrated. Different from the commonly used conventional approaches to form perovskite precursor solutions by mixing metal halides and organic halides such as PbI2, SnI2, MAI, FAI, etc., together, the precursor solutions are formulated by reacting pure Pb‐based perovskite precursor solutions with fine Sn metal powders. After the ratios between Pb and Sn are optimized, high PCEs of 15.85% and 18.21% can be achieved for MAPb0.4Sn0.6I3 and (FAPb0.6Sn0.4I3)0.85(MAPb0.6Sn0.4Br3)0.15 based PVSCs, which are the highest PCEs among all values reported to date for Pb‐Sn binary PVSCs. Moreover, the GDR perovskite‐based PVSCs exhibit significantly improved ambient and thermal stability with encapsulation, which can retain more than 90% of their initial PCEs after being stored in ambient (relative humidity (RH) ≈50%) for 1000 h or being thermal annealed at 80 °C for more than 120 h in ambient conditions. These results demonstrate the advantage of using GDR to prepare tunable bandgap binary perovskites for devices with greatly improved performance and stability.  相似文献   

15.
Controlling the crystallization of organic–inorganic hybrid perovskite is of vital importance to achieve high performing perovskite solar cells. The growth mechanism of perovskites has been intensively studied in devices with planar structures and traditional structures. However, for the printable mesoscopic perovskite solar cells, it is difficult to study the crystallization mechanism of perovskite owing to the complicated mesoporous structure. Here, a solvent evaporation controlled crystallization method to achieve ideal crystallization in the mesoscopic structure is provided. Combining results of scanning electron microscope and X‐ray diffraction, it is found that adjusting the evaporation rate of solvent can control the crystallization rate of perovskite and a model for the crystallization process during annealing in mesoporous structures is proposed. Finally, a homogeneous pore filling in the mesoscopic structure without any additives is successfully achieved and a stabilized power conversion efficiency of 16.26% using ternary‐cation perovskite absorber is realized. The findings will provide better understanding of perovskite crystallization in printable mesoscopic perovskite solar cells and pave the way for the commercialization of perovskite solar cells.  相似文献   

16.
Interfacial engineering, grain boundary, and surface passivation in organic–inorganic hybrid perovskite solar cells (HyPSCs) are effective in achieving high performance and enhanced durability. Organic additives and inorganic doping are generally used to chemically modify the surface contacting charge transport layers, and/or grain boundaries so as to reduce the defect density. Here, a simple but tricky one‐step method to dope organic–inorganic hybrid perovskite with Ge for the first time is reported. Unlike Ge doping to all‐inorganic perovskites, application of GeI2 in organic–inorganic perovskite precursors is challenging due to the extremely poor solubility of GeI2 in hybrid perovskite ink, leading to failure in the formation of uniform films. However, it is found that addition of methylammonium chloride (MACl) into the precursor remarkably increases the solubility of GeI2. This MACl‐assisted Ge doping of hybrid perovskites produces high‐quality crystalline film with its surface passivated with nonvolatile GeI2 (GeO2) and the volatile MACl additive also improves the uniformity of GeO2 distribution in the perovskite films. The resulting Ge‐doped mixed cation and mixed halide perovskite films with composition FA0.83MA0.17Ge0.03Pb0.97(I0.9Br0.1)3 show superior photoluminescence lifetime, power conversion efficiency above 22%, and greater stability toward illumination and humidity, outperforming photovoltaic properties of HyPSCs prepared without the Ge doping.  相似文献   

17.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

18.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

19.
Thermal degradation in perovskite solar cells is still an unsettled issue that limits its further development. In this study, 2‐(1H‐pyrazol‐1‐yl)pyridine is introduced into lead halide 3D perovskites, which allows 1D–3D hybrid perovskite materials to be obtained. The heterostructural 1D–3D perovskites are proved to be capable of remarkably prolonging the photoluminescence decay lifetime and suppressing charge carrier recombination in comparison to conventional 3D perovskites. The intrinsic properties of thermodynamically stable yet kinetically labile 1D materials allow the system to alleviate the lattice mismatch and passivate the interface traps of heterojunction region of 1D–3D hybrid perovskites that may occur during the crystal growth process. Importantly, the as‐fabricated 1D–3D perovskite solar cells display a thermodynamic self‐healing ability, which is induced through blocking the ion‐migration channels of A‐site ions by the flexible 1D perovskite with less densely close‐packed structure. Particularly, the power conversion efficiency of as‐fabricated unencapsulated 1D–3D perovskite solar cells is demonstrated to be reversible under temperature cycling (25–85 °C) at 55% relative humidity, which largely outperforms the pure 3D perovskite solar cell. The present study provides a facile approach to fabricate 1D–3D perovskite solar cells with high efficiency and long‐term stability.  相似文献   

20.
Currently, lead‐based perovskites with mixed multiple cations and hybrid halides are attracting intense research interests due to their promising stability and high efficiency. A tremendous amount of 3D and 2D perovskite compositions and configurations are causing a strong demand for high throughput synthesis and characterization. Furthermore, wide bandgap (≈1.75 eV) perovskites as promising top‐cell materials for perovskite–silicon tandem configurations require the screening of different compositions to overcome photoinduced halide segregation and still yielding a high open‐circuit voltage (Voc). Herein, a home‐made high throughput robot setup is introduced performing automatic perovskite synthesis and characterization. Subsequently, four kinds of compositions (i.e., cation mixtures of Cs–methylammonium (MA), Cs– formamidinium (FA), MA–FA, and FA–MA) with an optical bandgap of ≈1.75 eV are identified as promising device candidates. For Cs–MA and Cs–FA films it is found that the Br–I phase segregation indeed can be overcome. Moreover, Cs–MA, MA–FA, and Cs–FA based devices exhibit an average Voc of 1.17, 1.17, 1.12 V, and their maximum values approached 1.18, 1.19, 1.14 V, respectively, which are among the highest Voc (≈1.2 V) values for ≈40% Br perovskite. These findings highlight that the high throughput approach can effectively and efficiently accelerate the invention of novel perovskites for advanced applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号