首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of perennial bioenergy crops, such as Miscanthus, has rarely been studied although it is an important form of land use change. Miscanthus is a C4 plant, and the carbon (C) it deposits during its growth has a different isotopic signature (12/13C) compared to a C3 plant. Identifying the proportion of C stored and released to the atmosphere is important information for ecosystem models and life cycle analyses. During a removal experiment in June 2011 of a 20‐year old Miscanthus field (Grignon, France), vegetation was removed mechanically and chemically. Two replicate plots were converted into a rotation of annual crops, two plots had Miscanthus removed with no soil disturbance, followed by bare soil (set‐aside), one control plot was left with continued Miscanthus cultivation, and an adjacent field was used as annual arable crops control. There was a significant difference in the isotopic composition of the total soil C under Miscanthus compared with adjacent annual arable crops in all three measured soil layers (0–5, 5–10 and 10–20 cm). Before Miscanthus removal, total C in the soil under Miscanthus ranged from 4.9% in the top layer to 3.9% in the lower layers with δ13C values of ?16.3 to ?17.8 while soil C under the adjacent arable crop was significantly lower and ranged from 1.6 to 2% with δ13C values of ?23.2. This did not change much in 2012, suggesting the accumulation of soil C under Miscanthus persists for at least the first year. In contrast, the isotopic signals of soil respiration 1 year after Miscanthus removal from recultivated and set‐aside plots were similar to that of the annual arable control, while just after removal the signals were similar to that of the Miscanthus control. This suggests a rapid change in the form of soil C pools that are respired.  相似文献   

2.
Direct sowing of Miscanthus seed could lower crop establishment costs, and increase the rate of grower uptake and biomass supply for the emerging bio‐economy. A replicated field trial was conducted at two contrasting UK sites: Aberystwyth (ABR) in mid‐Wales and Blankney (BLK) in Lincolnshire. These sites encompass the west–east meteorological gradient in the United Kingdom where the growing season at ABR is cooler and wetter while BLK is warmer and drier. Primed and unprimed Miscanthus sinensis seeds were sown directly onto the soil surface with and without a clear biodegradable mulch film, at nine dates interspersed from May to October. Average daily mean soil surface temperatures measured over the first 2 months after sowing under the mulch film were higher than control plots (2.7°C ABR and 4.2°C BLK). At both sites, the film covering also affected soil volumetric moisture relative to uncovered control plots (?3% ABR and 8% BLK), demonstrating the negative impact of mulch film when sowing on dry soil. Over nine sowings, seed germination at ABR under film varied between ?28% and +18% of germination under control conditions. Seedlings from the first three sowings at both sites under film had sufficient physiological maturity to survive the first winter period. At BLK, mulch film significantly increased tiller count and height in both the first and second years after sowing. At ABR, where temperatures were lower, film covering significantly increased tiller height but not count. Water priming had no significant effect on seed viability or germination in the field tests. Base temperatures for germination of primed and unprimed seeds on a thermal gradient plate were 7.0°C and 5.7°C, respectively, with a ± 1.7°C confidence interval. Based on our results for M. sinensis in the United Kingdom, we recommend the sowing of unprimed seed in May under film and only when the soil is moist.  相似文献   

3.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

4.
  • The facultative root hemi‐parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi‐parasite.
  • Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi‐parasite, while plant biomass was measured for both R. minor and its host.
  • Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots.
  • Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi‐parasite on community productivity and diversity.
  相似文献   

5.
Restoration of submerged aquatic vegetation from seed has been hampered by a lack of information on the appropriate conditions for collecting, processing, and storing seeds prior to dispersal. Seeds must be processed and stored under conditions that maintain seed viability, meet dormancy requirements, and prevent premature germination. This study examined the effects of collection date, processing technique, aeration, storage and induction temperature and salinity, and storage period on seed germination of two mesohaline aquatic species, Potamogeton perfoliatus and Ruppia maritima. Collection date and processing technique were significant factors affecting seed yield from donor populations. Seeds of both species remained viable and germinated best when stored at 4°C, and then exposed to freshwater induction conditions. However, their responses to other factors differed. Aeration during storage was necessary in order to maintain viability of P. perfoliatus seeds, whereas it was unnecessary for R. maritima seeds. Storage in freshwater at 4°C prevented germination of P. perfoliatus seeds, while high salinity during cold storage was necessary to minimize premature germination of R. maritima. Mean germination time of P. perfoliatus was dependent on storage salinity; in contrast, mean germination time of R. maritima seeds was dependent on induction salinity. These differences indicate that the methods required to produce large quantities of underwater plant seed amenable to large‐scale restoration efforts must be tailored to the specific requirements of individual species and must consider the range of processes from initial harvest through seed testing prior to field establishment.  相似文献   

6.
A growing body of evidence indicates that second‐generation energy crops can play an important role in the development of renewable energy and the mitigation of climate change. However, dedicated energy crops have yet to be domesticated in order to fully realize their productive potential under unfavorable soil and climatic conditions. To explore the possibility of domesticating Miscanthus crops in northern China where marginal and degraded land is abundant, we conducted common garden experiments at multiple locations to evaluate variation and adaptation of three Miscanthus species that are likely to serve as the wild progenitors of the energy crops. A total of 93 populations of Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioriparius were collected across their natural distributional ranges in China and grown in three locations that represent temperate grassland with cold winter, the semiarid Loess Plateau, and relatively warm and wet central China. Evaluated with growth traits such as plant height, tiller number, tiller diameter, and flowering time, the Miscanthus species showed high levels of genetic variation within and between species. There were significant site × population interactions for almost all traits of M. sacchariflorus and M. sinensis, but not M. lutarioriparius. The northern populations of M. sacchariflorus had the highest establishment rates at the most northern site owing to their strong cold tolerance. An endemic species in central China, M. lutarioriparius, produced not only the highest biomass of the three species but also higher biomass at the Loess Plateau than the southern site near its native habitats. These results demonstrated that the wild species harbored a high level of genetic variation underlying traits important for crop establishment and production at sites that are colder and drier than their native habitats. The natural variation and adaptive plasticity found in the Miscanthus species indicated that they could provide valuable resources for the development of second‐generation energy crops.  相似文献   

7.
The high establishment costs of Miscanthus by clonal propagation are a barrier to widespread deployment. Direct sowing is the cheapest method, but limited field trials have given generally poor results. Miscanthus, a perennial grass with C4 photosynthesis has tropical origins, but is found growing both at high latitudes (>40°) and altitudes (>1000 m) in Asia. In this paper, we investigate if significant variation in the thermal requirements for germination exist in 10 Miscanthus sinensis half‐sib families and compare these with Panicum virgatum (Switchgrass – Trailblazer), Phalaris arundinaceae (Reed canary grass – P10) and Lolium perenne (perennial ryegrass cv AberDart) and maize (Zea mays cv Aviso). The comparisons were made on a thermal gradient bar with a controlled temperature oscillating ± 5 °C on a 12 h cycle and germination was monitored daily for 35 days at mean temperatures ranging from 5.3 to 26.5 °C. Base temperatures were calculated below which germination of at least 50% of viable seeds ceased. Base temperatures were lowest for L. perenne and Zea mays at 3.4 and 4.5 °C respectively; for different Miscanthus half‐sib families base temperatures ranged between 9.7 and 11.6 °C and these were higher than maize and switchgrass which share C4 photosynthesis with Miscanthus. Parameters derived from germination and temperature were used to predict germination patterns in Europe based on historical climate data. We predict that seed establishment of Miscanthus in spring time is unlikely to be viable in Northern Europe under present climatic conditions without crop management practices aimed at raising soil temperature, and that useful variation in thermal requirement for germination in Miscanthus is available which should facilitate seed germination in other regions.  相似文献   

8.
  • Grasslands across the globe are undergoing expansive degradation due to human impacts and climate change. If restoration of degraded native grassland is to be achieved at the scale now required, cost‐effective means for seed‐based establishment of grass species is crucial. However, grass seeds present numerous challenges associated with handling and germination performance that must be overcome to improve the efficiency of seeding. Previous research has demonstrated that complete removal of the palea and lemma (husk) maximises germination performance, hence we investigated the effects of complete husk removal on seed handling and germination of four temperate Australian grass species.
  • Three techniques were tested to remove the husk – manual cleaning, flaming or acid digestion (the latter two followed by a manual cleaning step); these techniques were refined and adapted to the selected species, and germination responses were compared.
  • The complete removal of the husk improved seed handling and sowability for all species. Germination was improved in Microlaena stipoides by 19% and in Rytidosperma geniculatum by 11%. Of the husk removal methods tested, flaming was detrimental to seed germination and fatal for one species (R. geniculatum). Compared to manual cleaning, sulphuric acid improved the overall efficacy of the cleaning procedure and increased germination speed (T50) in Austrostipa scabra, Chloris truncata and M. stipoides, and improved final germination in R. geniculatum by 13%.
  • The seed processing methods developed and tested in the present study can be applied to grass species that present similar handling and germination performance impediments. These and other technological developments (seed coating and precision sowing) will facilitate more efficient grassland restoration at large scale.
  相似文献   

9.
To date, most Miscanthus trials and commercial fields have been planted on arable land. Energy crops will need to be grown more on lower grade lands unsuitable for arable crops. Grasslands represent a major land resource for energy crops. In grasslands, where soil organic carbon (SOC) levels can be high, there have been concerns that the carbon mitigation benefits of bioenergy from Miscanthus could be offset by losses in SOC associated with land use change. At a site in Wales (UK), we quantified the relatively short‐term impacts (6 years) of four novel Miscanthus hybrids and Miscanthus × giganteus on SOC in improved grassland. After 6 years, using stable carbon isotope ratios (13C/12C), the amount of Miscanthus derived C (C4) in total SOC was considerable (ca. 12%) and positively correlated to belowground biomass of different hybrids. Nevertheless, significant changes in SOC stocks (0–30 cm) were not detected as C4 Miscanthus carbon replaced the initial C3 grassland carbon; however, initial SOC decreased more in the presence of higher belowground biomass. We ascribed this apparently contradictory result to the rhizosphere priming effect triggered by easily available C sources. Observed changes in SOC partitioning were modelled using the RothC soil carbon turnover model and projected for 20 years showing that there is no significant change in SOC throughout the anticipated life of a Miscanthus crop. We interpret our observations to mean that the new labile C from Miscanthus has replaced the labile C from the grassland and, therefore, planting Miscanthus causes an insignificant change in soil organic carbon. The overall C mitigation benefit is therefore not decreased by depletion of soil C and is due to substitution of fossil fuel by the aboveground biomass, in this instance 73–108 Mg C ha?1 for the lowest and highest yielding hybrids, respectively, after 6 years.  相似文献   

10.
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

11.
12.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

13.
Land‐use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance‐based estimates, ecosystem C exchange was studied during the early‐establishment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (?411 ± 63 g C m?2) in the third year, driven by significant above‐ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2 years of growth (?319 ± 57 (post‐planting) and ?397 ± 114 g C m?2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C‐neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG.  相似文献   

14.
In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data‐monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively. In the presence of water extract, the temperature rise of 2°C significantly inhibited the germination vigor and rate of P. Schrenkiana seed, and a temperature rise of 4°C significantly increased the inhibition to the seedling growth (< 0.05). Among the three organic fractions, the low‐polar fraction showed to be more phytotoxic than the other two fractions, causing significant inhibitory effects on the seed germination and growth even at low concentration of 0.1 mg/mL, and the inhibition effect was enhanced as temperature increased. The temperature rise significantly enhanced the promotion effect of DHAP, while the inhibition effect of temperature rise became less important with increasing concentration of DHAP. This investigation revealed that autotoxicity of P. schrenkiana was affected by the climate warming. As expected, it provided an insight into the mechanism and effectiveness of allelopathy in bridging the causal relationship between forest evolution and climate warming.  相似文献   

15.
  • Although orthopterans are rarely considered to be effective seed dispersal agents, the large flightless crickets known as ‘weta’ have been suggested to function as ecological replacements for small mammals in New Zealand, where such mammals are absent. In addition, a recent study reported that camel crickets mediate seed dispersal of several heterotrophic plants, including Yoania amagiensis in Japan.
  • I investigated the seed dispersal mechanism of Yoania japonica because the fruit morphology is similar to Y. amagiensis. Specifically, I aimed to determine whether Y. japonica fruits are consumed by camel crickets and, if so, whether the seeds defecated by camel crickets remains intact, by checking seed viability with TTC staining, and whether germination rate is different between seeds collected directly from fruits and defecated seeds by comparing in situ seed germinability.
  • The present study provides evidence that camel crickets function as seed dispersal agents of Y. japonica. Camel crickets were important consumers of Y. japonica fruits, and a substantial portion of the consumed seeds remained viable after passing through the digestive tract. In situ seed germination experiments revealed that the seeds defecated by camel crickets actually germinated in the field. In addition, the germination rate of defecated seeds was even higher than that of intact seeds, although the difference was not significant.
  • Taken together with recent reports of insect‐mediated endozoochory, such a seed dispersal system may be common in plants with fleshy indehiscent fruits and small seeds, even in locations where other seed dispersal agents are present.
  相似文献   

16.
This article identifies marginal land technically available for the production of energy crops in China, compares three models of yield prediction for Miscanthus × giganteus, Panicum virgatum L. (switchgrass), and Jatropha, and estimates their spatially specific yields and technical potential for 2017. Geographic Information System (GIS) analysis of land use maps estimated that 185 Mha of marginal land was technically available for energy crops in China without using areas currently used for food production. Modeled yields were projected for Miscanthus × giganteus, a GIS‐based Environmental Policy Integrated Climate model for switchgrass and Global Agro‐Ecological Zone model for Jatropha. GIS analysis and MiscanFor estimated more than 120 Mha marginal land was technically available for Miscanthus with a total potential of 1,761 dry weight metric million tonne (DW Mt)/year. A total of 284 DW Mt/year of switchgrass could be obtained from 30 Mha marginal land, with an average yield of 9.5 DW t ha?1 year?1. More than 35 Mha marginal land was technically available for Jatropha, delivering 9.7 Mt/year of Jatropha seed. The total technical potential from available marginal land was calculated as 31.7 EJ/year for Miscanthus, 5.1 EJ/year for switchgrass, and 0.13 EJ/year for Jatropha. A total technical bioenergy potential of 34.4 EJ/year was calculated by identifying best suited crop for each 1 km2 grid cell based on the highest energy value among the three crops. The results indicate that the technical potential per hectare of Jatropha is unable to compete with that of the other two crops in each grid cell. This modeling study provides planners with spatial overviews that demonstrate the potential of these crops and where biomass production could be potentially distributed in China which needs field trials to test model assumptions and build experience necessary to translate into practicality.  相似文献   

17.
18.
Seed germination is a complex trait determined by both quantitative trait loci (QTLs) and environmental factors and also their interactions. In this study, we mapped one major QTLqSE3 for seed germination and seedling establishment under salinity stress in rice. To understand the molecular basis of this QTL, we isolated qSE3 by map‐based cloning and found that it encodes a K+ transporter gene, OsHAK21. The expression of qSE3 was significantly upregulated by salinity stress in germinating seeds. Physiological analysis suggested that qSE3 significantly increased K+ and Na+ uptake in germinating seeds under salinity stress, resulting in increased abscisic acid (ABA) biosynthesis and activated ABA signaling responses. Furthermore, qSE3 significantly decreased the H2O2 level in germinating seeds under salinity stress. All of these seed physiological changes modulated by qSE3 might contribute to seed germination and seedling establishment under salinity stress. Based on analysis of single‐nucleotide polymorphism data of rice accessions, we identified a HAP3 haplotype of qSE3 that was positively correlated with seed germination under salinity stress. This study provides important insights into the roles of qSE3 in seed germination and seedling establishment under salinity stress and facilitates the practical use of qSE3 in rice breeding.  相似文献   

19.
Coastal systems worldwide deliver vital ecosystem services, such as biodiversity, carbon sequestration, and coastal protection. Effectivity of these ecosystem services increases when vegetation is present. Understanding the mechanisms behind vegetation establishment in bio‐geomorphic systems is necessary to understand their ability to recover after erosive events and potential adaptations to climate change. In this study, we examined how seed availability affects vegetation establishment in the salt marsh–intertidal flat transition zone: the area with capacity for lateral marsh expansion. This requires vegetation establishment; therefore, seed availability is essential. In a 6‐month field experiment, we simulated a before and after winter seed dispersal at two locations, the salt‐marsh vegetation edge and the intertidal flat, and studied seed retention, the seed bank, and the seed viability of three pioneer marsh species: Salicornia procumbens, Aster tripolium, and Spartina anglica. During winter storm conditions, all supplied seeds eroded away with the sediment surface layer. After winter, supplied seeds from all three species were retained, mostly at the surface while 9% was bioturbated downwards. In the natural seed bank, A. tripolium and S. anglica were practically absent while S. procumbens occurred more frequently. The viability of S. procumbens seeds was highest at the surface, between 80% and 90%. The viability quickly decreased with depth, although viable S. procumbens seeds occurred up to 15 cm depth. Only when seeds were supplied after winter, many S. procumbens and some S. anglica individuals did establish successfully in the transition zone. Viable seed availability formed a vegetation establishment threshold, even with a local seed source. Our results suggest that, although boundary conditions such as elevation, inundation, and weather conditions were appropriate for vegetation establishment in spring, the soil surface in winter can be so dynamic that it limits lateral marsh expansion. These insights can be used for designing effective nature‐based coastal protection.  相似文献   

20.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号