首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
  1. Functional traits are measurable characteristics of an organism that have an impact on its fitness. Variation in functional traits between and among species has been suggested to represent the basis for competition and selection, thus allowing for evolution in natural populations.
  2. In freshwater ecosystems, the availability of essential polyunsaturated fatty acids (PUFAs), in particular ω3‐ and ω6‐PUFAs, determines the food quality of phytoplankton for the herbivorous zooplankton Daphnia, an unselective filter feeder. The content of such essential PUFAs in the phytoplankton is thus a functional phytoplankton trait affecting the trophic transfer efficiency and dynamics at the pelagic plant–herbivore interface.
  3. In turn, the susceptibility of consumers to become limited by the availability of essential PUFAs is a fitness‐determining trait of Daphnia genotypes, and variability of this herbivore trait may thus affect the daphnids’ intrapopulation competition. To estimate the intrapopulation variation in susceptibility, we isolated clonal lines of Daphnia longispina from a natural population and compared the strength of their limitation by dietary PUFA availability via standardised laboratory growth assays. We used a liposome supplementation technique to enrich a PUFA‐poor green alga with essential ω3‐ and ω6‐PUFAs and determined juvenile somatic growth rate of different D. longispina genotypes as a fitness proxy.
  4. As expected, D. longispina genotypes that coexisted in a natural population differed markedly in their specific patterns of susceptibility to dietary PUFA availability. On average, the D. longispina population was more strongly susceptible to limitations in the availability of the ω6‐PUFA arachidonic acid (20:4ω6) than to limitations in the availability of ω3‐PUFAs α‐linolenic acid (18:3ω3) and eicosapentaenoic acid (20:5ω3).
  5. The ability to cope with PUFA limitation is thus a crucial trait that can probably affect intraspecific competition and Daphnia population structure. Therefore, we suggest that such intrapopulation variation in susceptibility to absence of dietary PUFAs might be one of the driving forces of natural selection and local adaptation among freshwater zooplankton.
  相似文献   

2.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

3.
The chemical composition of 45 essential oil samples isolated from the leaves of Polyalthia oliveri harvested in three Ivoirian forests was investigated by GC‐FID (retention indices measured on two columns of different polarities), and by 13C‐NMR, following a method developed in our laboratory. In total, 41 components were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (1.2 – 50.8%), α‐humulene (0.6 – 47.7%), isoguaiene (0 – 27.9%), alloaromadendrene (0 – 24.7%), germacrene B (0 – 18.3%), δ‐cadinene (0.4 – 19.3%), and β‐selinene (0.2 – 18.5%). The analysis of six oil samples selected in function of their chromatographic profiles is reported in detail. The 45 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The compositions of the oils from group I (15 samples) and II (12 samples) were dominated by (E)‐β‐caryophyllene and α‐humulene, respectively. Oil samples of group III (18 samples) needed to be partitioned into four subgroups III.1–III.4 whose compositions were dominated by alloaromadenrene, isoguaiene, germacrene B, and δ‐cadinene, respectively.  相似文献   

4.
The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC‐FID and GC/MS. Intra‐species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 – 98.5% with yields varied of 0.09 – 0.36% and the main compounds were zingiberenol 1 (8.7 – 29.8%), eremoligenol (4.2 – 12.5%), β‐curcumene (2.1 – 12.5%), zingiberenol 2 (4.6 – 19.8%) and (E,Z)‐farnesol (3.5 – 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2‐diphenyl‐1‐picrylhydrazyl, Ferric‐Reducing Antioxidant Power Assay and β‐carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by Pexpansum.  相似文献   

5.
The restriction of effective insecticides has facilitated the woolly apple aphid (WAA) Eriosoma lanigerum to become a major pest in apple orchards in Western Europe. It has also promoted alternative control strategies such as the use of entomopathogenic nematodes (EPN). We evaluated the control capacity of six commercially available EPN, viz. Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri and Steinernema kraussei. We assessed the potential of these EPN to colonize and parasitize E. lanigerum in an in vitro multiwell test. Only S. carpocapsae caused higher mortality (20–40%) than the control treatment (water). However, the mortality observed with S. carpocapsae was found to be a test artefact and not induced by its specific entomopathogenic activity. A similar mortality range was recorded when applying the non‐entomopathogenic nematode Pratylenchus thornei in the same multiwell test set‐up. This result warrants careful interpretation of parasitism in these artificial test conditions. The failure of EPN activity was supported in further experiments by frequently finding S. carpocapsae inside living WAA. The presence of the EPN had no effect on aphid reproduction as numbers of ‘large’ embryos in EPN‐colonized and non‐colonized females were similar. In addition, the dauer juveniles did not recover in E. lanigerum reflecting that S. carpocapsae could not develop inside the WAA. We further demonstrated that growth of the EPN‐symbiotic bacteria Xenorhabdus nematophila and Photorhabdus luminescens is inhibited by the body fluid of the WAA, and we speculate that this antibacterial activity is the cause of the unsuccessful parasitization of the WAA by the EPN. This antibiosis inside the body of E. lanigerum would prevent production of the endotoxins by the bacterial symbionts that are essential for entomopathogenicity and insect control.  相似文献   

6.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   

7.
Crambe abyssinica is a hexaploid oil crop for industrial applications. An increase of erucic acid (C22:1) and reduction of polyunsaturated fatty acid (PUFA) contents in crambe oil is a valuable improvement. An increase in oleic acid (C18:1), a reduction in PUFA and possibly an increase in C22:1 can be obtained by down‐regulating the expression of fatty acid desaturase2 genes (CaFAD2), which code for the enzyme that converts C18:1 into C18:2. We conducted EMS‐mutagenesis in crambe, followed by Illumina sequencing, to screen mutations in three expressed CaFAD2 genes. Two novel analysis strategies were used to detect mutation sites. In the first strategy, mutation detection targeted specific sequence motifs. In the second strategy, every nucleotide position in a CaFAD2 fragment was tested for the presence of mutations. Seventeen novel mutations were detected in 1100 one‐dimensional pools (11 000 individuals) in three expressed CaFAD2 genes, including non‐sense mutations and mis‐sense mutations in CaFAD2‐C1, ‐C2 and ‐C3. The homozygous non‐sense mutants for CaFAD2‐C3 resulted in a 25% higher content of C18:1 and 25% lower content of PUFA compared to the wild type. The mis‐sense mutations only led to small changes in oil composition. Concluding, targeted mutation detection using NGS in a polyploid was successfully applied and it was found that a non‐sense mutation in even a single CaFAD2 gene can lead to changes in crambe oil composition. Stacking the mutations in different CaFAD2 may gain additional changes in C18:1 and PUFA contents.  相似文献   

8.
9.
While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold‐tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range‐wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L. sibirica distribution range; and (ii) date the last major population expansion in both L. sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien‐Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre‐dates the LGM, with a mode in a range of 220 000–1 340 000 years BP. Hence, L. sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre‐dating the Last Glacial Maximum.  相似文献   

10.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   

11.
The case‐control study was designed to investigate the genetic effects of interferon‐gamma (IFN‐γ) rs2069727 and rs1861494 polymorphisms on ankylosing spondylitis (AS) susceptibility in a Chinese Han population. Blood samples were collected from 108 AS patients and 110 healthy controls. IFN‐γ polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP). Hardy‐Weinberg equilibrium (HWE) test was performed in control group. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using chi‐square test to evaluate the association between AS susceptibility and IFN‐γ polymorphisms, and the results were adjusted by logistic regressive analysis. The frequency of rs2069727 CC genotype was much higher in cases than that in controls, suggested its significant association with increased AS risk (adjusted OR = 5.899, 95% CI = 1.563‐22.261; P = .009). In addition, C allele also showed close association with increased risk of AS (adjusted OR = 2.052, 95% CI = 1.286‐1.704, P  = 0 .003). While the genotype and allele frequencies of IFN‐γ rs1861494 polymorphism were not significantly different between patients and controls (P  > 0.05 for all), IFN‐γ rs2069727 polymorphism is significantly associated with increased AS risk in a Chinese Han Population.  相似文献   

12.
Forty‐two essential oil samples were isolated from leaves of Xylopia rubescens harvested in three forests of Southern Ivory Coast. All the samples have been submitted to GC‐FID and the retention indices (RIs) of individual components have been measured on two capillary columns of different polarity. In addition, 20 oil samples, selected on the basis of their chromatographic profile, were also analyzed by 13C‐NMR and 24 components (78.0 – 92.4% of the whole compositions) have been identified. The content of the main components varied drastically from sample to sample: furanoguaia‐1,4‐diene (5.7 – 54.1%), furanoguaia‐1,3‐diene (1.1 – 10.5%), (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (4.3 – 16.0%), and (E)‐β‐caryophyllene (1.7 – 17.3%). Hierarchical cluster and principal components analysis of the 42 oil compositions allowed the distinction of two well‐differentiated groups of unequal importance within the oil samples. Oil samples of the main group (Group II) contained mainly furanoguaia‐1,4‐diene (mean [M] = 43.1%; standard deviation [SD] = 3.2%) while furanoguaia‐1,3‐diene (M = 8.4%; SD = 0.9%) and (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (M = 7.1%; SD = 1.5%) were present at appreciable contents. The composition of Group I was dominated by furanoguaia‐1,4‐diene (M = 17.0%; SD = 8.5%), (8Z,11Z,14Z)‐heptadeca‐8,11,14‐trien‐2‐one (M = 10.2%; SD = 2.4%) and (E)‐β‐caryophyllene (M = 9.5%; SD = 5.3%).  相似文献   

13.
The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy‐six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)‐β‐caryophyllene (14.4%), β‐pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms.  相似文献   

14.
15.
The genus Acacia is quite large and can be found in the warm subarid and arid parts, but little is known about its chemistry, especially the volatile parts. The volatile oils from fresh flowers of Amollissima and Acyclops (growing in Tunisia) obtained by hydrodistillation were analyzed by GC then GC/MS. Eighteen (94.7% of the total oil composition) and 23 (97.4%) compounds were identified in these oils, respectively. (E,E)‐α‐Farnesene (51.5%) and (E)‐cinnamyl alcohol (10.7%) constituted the major compounds of the flower oil of Amollissima, while nonadecane (29.6%) and caryophyllene oxide (15.9%) were the main constituents of the essential oil of Acyclops. Antioxidant activity of the isolated oils was studied by varied assays, i.e., 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2‐azinobis 3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS); the isolated oils showed lowest IC50 (4 – 39 μg/ml) indicating their high antioxidant activity. The α‐glucosidase inhibitor activity was also evaluated and Acacia oils were found to be able to strongly inhibit this enzyme with IC50 values (81 – 89 μg/ml) very close to that of acarbose which was used as positive control. Furthermore, they were tested against five Gram‐positive and Gram‐negative bacteria and one Candida species. Essential oil of Amollissima was found to be more active than that of Acyclops, especially against Pseudomonas aeruginosa (MIC = 0.31 mg/ml and MBC = 0.62 mg/ml).  相似文献   

16.
Seed oil composed of wax esters with long‐chain monoenoic acyl moieties represents a high‐value commodity for industry. Such plant‐derived sperm oil‐like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low‐input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol‐forming acyl‐CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl‐CoA substrates. To produce plant‐derived sperm oil‐like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1?c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1?c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.  相似文献   

17.
Fish‐mint (Houttuynia cordataThunb .), belonging to family Saururaceae, has long been used as food and traditional herbal medicine. The present study was framed to assess the changes occurring in the essential‐oil composition of H. cordata during annual growth and to evaluate allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activities. The essential‐oil content ranged from 0.06 – 0.14% and 0.08 – 0.16% in aerial parts and underground stem, respectively. The essential oils were analysed by GC‐FID, GC/MS, and NMR (1H and 13C). Major constituents of aerial‐parts oil was 2‐undecanone (19.4 – 56.3%), myrcene (2.6 – 44.3%), ethyl decanoate (0.0 – 10.6%), ethyl dodecanoate (1.1 – 8.6%), 2‐tridecanone (0.5 – 8.3%), and decanal (1.1 – 6.9%). However, major constituents of underground‐stem oil were 2‐undecanone (29.5 – 42.3%), myrcene (14.4 – 20.8%), sabinene (6.0 – 11.1%), 2‐tridecanone (1.8 – 10.5%), β‐pinene (5.3 – 10.0%), and ethyl dodecanoate (0.8 – 7.3%). Cluster analysis revealed that essential‐oil composition varied substantially due to the plant parts and season of collection. The oils exhibited significant allelopathic (inhibition: 77.8 – 88.8%; LD50: 2.45 – 3.05 μl/plate), antibacterial (MIC: 0.52 – 2.08 μl/ml; MBC: bacteriostatic) and antifungal (MIC: 2.08 – 33.33 μl/ml; MFC: 4.16 – 33.33 μl/ml) activities. The results indicate that the essential oil from Hcordata has a significant potential to allow future exploration and exploitation as a natural antimicrobial and allelopathic agent.  相似文献   

18.
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome‐level genome assembly of WAA—representing the first genome sequence from the aphid subfamily Eriosomatinae—using a combination of 10X Genomics linked‐reads and in vivo Hi‐C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein‐coding genes. The assembly is highly complete, including 97% of conserved arthropod single‐copy orthologues based on Benchmarking Universal Single‐Copy Orthologs (busco ) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high‐quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect–plant interactions and pest resistance management.  相似文献   

19.
The essential oils isolated from fresh aerial parts of Ballota macedonica (two populations) and Ballota nigra ssp. foetida were analyzed by GC and GC/MS. Eighty five components were identified in total; 60 components in B. macedonica oil (population from the Former Yugoslav Republic of Macedonia), 34 components in B. macedonica oil (population from the Republic of Serbia), and 33 components in the oil of B. nigra ssp. foetida accounting for 93.9%, 98.4%, and 95.8% of the total oils, respectively. The most abundant components in B. macedonica oils were carotol (13.7 – 52.1%), germacrene D (8.6 – 24.6%), and (E)‐caryophyllene (6.5 – 16.5%), while B. nigra ssp. foetida oil was dominated by (E)‐phytol (56.9%), germacrene D (10.0%), and (E)‐caryophyllene (4.7%). Multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis) were used to compare and discuss relationships among Ballota species examined so far based on their volatile profiles. The chemical compositions of B. macedonica essential oils are reported for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号