首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite solar cells are one of the most promising photovoltaic technologies, although their molecular level design and stability toward environmental factors remain a challenge. Layered 2D Ruddlesden–Popper perovskite phases feature an organic spacer bilayer that enhances their environmental stability. Here, the concept of supramolecular engineering of 2D perovskite materials is demonstrated in the case of formamidinium (FA) containing A2FAn?1PbnI3n+1 formulations by employing (adamantan‐1‐yl)methanammonium (A) spacers exhibiting propensity for strong Van der Waals interactions complemented by structural adaptability. The molecular design translates into desirable structural features and phases with different compositions and dimensionalities, identified uniquely at the atomic level by solid‐state NMR spectroscopy. For A2FA2Pb3I10, efficiencies exceeding 7% in mesoscopic device architectures without any additional treatment or use of antisolvents for ambient temperature film deposition are achieved. This performance improvement over the state‐of‐the‐art FA‐based 2D perovskites is accompanied by high operational stability under humid ambient conditions, which illustrates the utility of the approach in perovskite solar cells and sets the basis for advanced supramolecular design in the future.  相似文献   

2.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

3.
2D Ruddlesden–Popper (RP) perovskites have recently emerged as promising candidates for hybrid perovskite photovoltaic cells, realizing power‐conversion efficiencies (PCEs) of over 10% with technologically relevant stability. To achieve solar cell performance comparable to the state‐of‐the‐art 3D perovskite cells, it is highly desirable to increase the conductivity and lower the optical bandgap for enhanced near‐IR region absorption by increasing the perovskite slab thickness. Here, the use of the 2D higher member (n = 5) RP perovskite (n‐butyl‐NH3)2(MeNH3)4Pb5I16 in depositing highly oriented thin films from dimethylformamide/dimethylsulfoxide mixtures using the hot‐casting method is reported. In addition, they exhibit superior environmental stability over thin films of their 3D counterpart. These films are assembled into high‐efficiency solar cells with an open‐circuit voltage of ≈1 V and PCE of up to 10%. This is achieved by fine‐tuning the solvent ratio, crystal growth orientation, and grain size in the thin films. The enhanced performance of the optimized devices is ascribed to the growth of micrometer‐sized grains as opposed to more typically obtained nanometer grain size and highly crystalline, densely packed microstructures with the majority of the inorganic slabs preferentially aligned out of plane to the substrate, as confirmed by X‐ray diffraction and grazing‐incidence wide‐angle X‐ray scattering mapping.  相似文献   

4.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

5.
For practical use of perovskite solar cells (PSCs) the instability issues of devices, attributed to degradation of perovskite molecules by moisture, ions migration, and thermal‐ and light‐instability, have to be solved. Herein, highly efficient and stable PSCs based on perovskite/Ag‐reduced graphene oxide (Ag‐rGO) and mesoporous Al2O3/graphene (mp‐AG) composites are reported. The mp‐AG composite is conductive with one‐order of magnitude higher mobility than mp‐TiO2 and used for electron transport layer (ETL). Compared to the mp‐TiO2 ETL based cells, the champion device based on perovskite/Ag‐rGO and SrTiO3/mp‐AG composites shows overall a best performance (i.e., VOC = 1.057 V, JSC = 25.75 mA cm?2, fill factor (FF) = 75.63%, and power conversion efficiency (PCE) = 20.58%). More importantly, the champion device without encapsulation exhibits not only remarkable thermal‐ and photostability but also long‐term stability, retaining 97–99% of the initial values of photovoltaic parameters and sustaining ≈93% of initial PCE over 300 d under ambient conditions.  相似文献   

6.
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.  相似文献   

7.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

8.
With the potential of achieving high efficiency and low production costs, perovskite solar cells (PSCs) have attracted great attention. However, their unstableness under moist condition has retarded the commercial development. Recently, 2D perovskites have received a lot of attention due to their high moisture resistance. In this work, four quasi 2D quasi perovskites are prepared, then their stability under moist condition is investigated. The surface morphology, crystal structure, optical properties, and photovoltaic performance are measured. Among the four quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the best performance: uniform and dense film, extremely well‐oriented crystal structure, strong absorption, and a high power conversion efficiency (PCE) of 17.40%. The aging tests show that quasi‐2D perovskites are more stable under moist conditions than FAPbI3 is. The (C6H5CH2NH3)2(FA)8Pb9I28 quasi‐2D perovskite devices exhibit high humidity stability, maintaining 80% of the starting PCE after 500 h under 80% relative humidity. Compared with other quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the highest humidity stability, due to their strongest hydrophobicity from C6H5CH2NH3+. This work demonstrates that the properties of perovskite materials can be modified by adding different ammonium salts into FAPbI3. Thus, by introducing ammonium salts with high hydrophobic properties the fabrication of highly efficient and stable 2D PSCs may be possible.  相似文献   

9.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

10.
Carbon‐based hole transport material (HTM)‐free perovskite solar cells (PSCs) have shown much promise for practical applications because of their high stability and low cost. However, the efficiencies of this kind of PSCs are still relatively low, especially for the simplest paintable carbon‐based PSCs, in comparison with the organic HTM‐based PSCs. This can be imputed to the perovskite deposition methods that are not very suitable for this kind of devices. A solvent engineering strategy based on two‐step sequential method is exploited to prepare a high‐quality perovskite layer for the paintable carbon‐based PSCs in which the solvent for CH3NH3I (MAI) solution at the second step is changed from isopropanol (IPA) to a mixed solvent of IPA/Cyclohexane (CYHEX). This mixed solvent not only accelerates the conversion of PbI2 to CH3NH3PbI3 but also suppresses the Ostwald ripening process resulting in a high‐quality perovskite layer, e.g., pure phase, even surface, and compact capping layer. The paintable carbon‐based PSCs fabricated from IPA/CYHEX solvent exhibits a considerable enhancement in photovoltaic performance and performance reproducibility in comparison with that from pure IPA, especially on fill factor (FF), owing mainly to the better contact of perovskite/carbon interface, lower trap density in perovskite, higher light absorption ability, and faster charge transport of perovskite layer. As a result, the highest power conversion efficiency (PCE) of 14.38% is obtained, which is a record value for carbon‐based HTM‐free PSCs. Furthermore, a PCE of as high as 10% is achieved for the large area device (1 cm2), also the highest of its kind.  相似文献   

11.
The highest certified power conversion efficiency (PCE) of black phase based CsPbI3 perovskite solar cells has exceeded 18%, and become a hotspot in recent progress. However, the black phase of CsPbI3 rapidly transforms to yellow phase in ambient conditions due to its thermodynamic instability. Here, a Ruddlesden–Popper 2D structure is introduced into γ‐CsPbI3 film to stabilize the black phase via reducing dimensionality. It is found that a judicious amount of phenylethylammonium iodide can adjust the dimensionality of γ‐CsPbI3 film from 2D to quasi‐2D and 3D phase. Comprehensive consideration to obtain both the stability and high PCE, quasi‐2D (n = 40) γ‐CsPbI3 delivers a reproducible PCE of 13.65% with negligible hysteresis. By utilizing femtosecond transient absorption and time‐resolved PL decay, similar carrier kinetics in n = 40 and ∞ samples are observed, meaning an efficient charge extraction. More importantly, when the device is placed at 80 °C in N2 condition or in air with RH of 25–30%, its PCE keeps ≈88% and ≈89% of its initial PCE after 12 days, respectively. Such results are better than the 3D one (≈69% and ≈16%, respectively).  相似文献   

12.
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).  相似文献   

13.
2D Ruddlesden–Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)2(MA)n?1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and ∞ are systematically investigated. It is found that n–n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p–n junctions in the pure 2D and 3D scenarios (n = 1 and ∞). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open‐circuit voltage (Voc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the Voc to evidently increase by 94 mV. Capacitance–voltage measurements with Mott–Schottky analysis demonstrate that such Voc improvement is attributed to the enhanced potential at the interface.  相似文献   

14.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.  相似文献   

15.
Recently, considerable progress is achieved in lab prototype perovskite solar cells (PSCs); however, the stability of outdoor applications of PSCs remains a challenge due to the high sensitivity of perovskite material under moist and ultraviolet (UV) light conditions. In this work, the UV photostability of PSC devices is improved by incorporating a photon downshifting layer—SrAl2O4: Eu2+, Dy3+ (SAED)—prepared using the pulsed laser deposition approach. Light‐induced deep trap states in the photoactive layer are depressed, and UV light‐induced device degradation is inhibited after the SAED modification. Optimized power conversion efficiency (PCE) of 17.8% is obtained through the enhanced light harvesting and reduced carrier recombination provided by SAED. More importantly, a solar energy storage effect due to the long‐persistent luminescence of SAED is obtained after light illumination is turned off. The introduction of downconverting material with long‐persistent luminescence in PSCs not only represents a new strategy to improve PCE and light stability by photoconversion from UV to visible light but also provides a new paradigm for solar energy storage.  相似文献   

16.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

17.
Perovskite solar cells (PSCs) have gained a promising position during the past few years. However, as far as it goes, there is rare combination of the merits of metal–organic framework with PSCs. In this work, a 3D metal–organic framework, namely, [In2(phen)3Cl6]·CH3CN·2H2O (In2) is first introduced into hole transport material of PSCs through band alignment engineering. By this facile strategy, the pinholes in the hole transport layer are effectively reduced, and the migration of Au into the entire PSC structure can be alleviated simultaneously. Meanwhile, In2 also plays a role in enhancing the light absorption of perovskite, which is due to: (1) the large particles of In2 acting as light scattering centers; (2) the emission wavelength of In2 is almost the same as the excitation wavelength of perovskite. Consequently, short‐current density (Jsc), open circuit voltage (Voc), and fill factor (FF) gain a significant increase from 19.53 to 21.03 mA cm?2, 0.98 to 1.01 V, and 0.67 to 0.74, respectively. Thereby, the power conversion efficiency is remarkably enhanced from 12.8% to 15.8%. In the end, the stability of PSCs should also be improved.  相似文献   

18.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

19.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

20.
All‐inorganic CsPbBrI2 perovskite has great advantages in terms of ambient phase stability and suitable band gap (1.91 eV) for photovoltaic applications. However, the typically used structure causes reduced device performance, primarily due to the large recombination at the interface between the perovskite, and the hole‐extraction layer (HEL). In this paper, an efficient CsPbBrI2 perovskite solar cell (PSC) with a dimensionally graded heterojunction is reported, in which the CsPbBrI2 material is distributed within bulk–nanosheet–quantum dots or 3D–2D–0D dimension‐profiled interface structure so that the energy alignment is optimized in between the valence and conduction bands of both CsPbBrI2 and the HEL layers. Specifically, the valence‐/conduction‐band edge is leveraged to bend with synergistic advantages: the graded combination enhances the hole extraction and conduction efficiency with effectively decreased recombination loss during the hole‐transfer process, leading to an enhanced built‐in electric field, hence a high VOC of as much as 1.19 V. The profiled structure induces continuously upshifted energy levels, resulting in a higher JSC of as much as 12.93 mA cm?2 and fill factor as high as 80.5%, and therefore record power conversion efficiency (PCE) of 12.39%. As far as it is known, this is the highest PCE for CsPbBrI2 perovskite‐based PSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号