首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   

2.
Perovskite solar cells have evolved to have compatible high efficiency and stability by employing mixed cation/halide type perovskite crystals as pinhole‐free large grain absorbers. The cesium (Cs)–formamidium–methylammonium triple cation‐based perovskite device fabricated in a glove box enables reproducible high‐voltage performance. This study explores the method to reproduce stable and high power conversion efficiency (PCE) of a triple cation perovskite prepared using a one‐step solution deposition and low‐temperature annealing fully conducted in controlled ambient humidity conditions. Optimizing the perovskite grain size by Cs concentration and solution processes, a route is created to obtain highly uniform, pinhole‐free large grain perovskite films that work with reproducible PCE up to 20.8% and high preservation stability without cell encapsulation for more than 18 weeks. This study further investigates the light intensity characteristics of open‐circuit voltage (Voc) of small (5 × 5 mm2, PCE > 20%) and large (10 × 10 mm2, PCE of 18%) devices. Intensity dependence of Voc shows an ideality factor in the range of 1.7‐1.9 for both devices, implying that the triple cation perovskite involves trap‐assisted recombination loss at the hetero junction interfaces that influences Voc. Despite relatively high ideality factor, perovskite device is capable of supplying high power conversion efficiency under low light intensity (0.01 Sun) whereas maintaining Voc over 0.9 V.  相似文献   

3.
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021 , are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315 , the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021 , whose PCE is much higher than the 11.70% PCE for SM315 . To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting.  相似文献   

4.
The work functions for charge transport layers in perovskite solar cells affect device performance significantly. In this work, the regular poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is modified by adding a polymer electrolyte PSS‐Na to improve its HTL function in perovskite solar cells. The modified PEDOT:PSS films (called m‐PEDOT:PSS) possess higher work function than the regular one. Its energy level matches the valence band of perovskite very well, leading to enhanced Voc and PCE (power conversion efficiency). When CH3NH3PbI3 is used as the light absorber, the cell with PEDOT:PSS HTL gives a Voc of 0.96 V and a PCE of 12.35%, while the cell with m‐PEDOT:PSS layer gives a Voc of 1.11 V and a PCE of 15.56%. Enhanced Voc and PCE are also achieved when CH3NH3PbI2Br or CH3NH3PbBr3 is used as the light absorber. The m‐PEDOT:PSS/CH3NH3PbBr3/PC61BM solar cells demonstrate an outstanding Voc of 1.52 V.  相似文献   

5.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

6.
Mixed iodide‐bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite‐silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal‐photostability of wide‐bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA‐modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open‐circuit voltage (V oc) of 1.24 V.  相似文献   

7.
For practical use of perovskite solar cells (PSCs) the instability issues of devices, attributed to degradation of perovskite molecules by moisture, ions migration, and thermal‐ and light‐instability, have to be solved. Herein, highly efficient and stable PSCs based on perovskite/Ag‐reduced graphene oxide (Ag‐rGO) and mesoporous Al2O3/graphene (mp‐AG) composites are reported. The mp‐AG composite is conductive with one‐order of magnitude higher mobility than mp‐TiO2 and used for electron transport layer (ETL). Compared to the mp‐TiO2 ETL based cells, the champion device based on perovskite/Ag‐rGO and SrTiO3/mp‐AG composites shows overall a best performance (i.e., VOC = 1.057 V, JSC = 25.75 mA cm?2, fill factor (FF) = 75.63%, and power conversion efficiency (PCE) = 20.58%). More importantly, the champion device without encapsulation exhibits not only remarkable thermal‐ and photostability but also long‐term stability, retaining 97–99% of the initial values of photovoltaic parameters and sustaining ≈93% of initial PCE over 300 d under ambient conditions.  相似文献   

8.
Morphology control is one of the key strategies in optimizing the performance of organic photovoltaic materials, particularly for diketopyrrolopyrrole (DPP)‐based donor polymers. The design of DPP‐based polymers that provide high power conversion efficiency (PCE) presents a significant challenge that requires optimization of both energetics and morphology. Herein, a series of high performance, small band gap DPP‐based terpolymers are designed via two‐step side chain engineering, namely introducing alternating short and long alkyls for reducing the domain spacing and inserting alkylthio for modulating the energy levels. The new DPP‐based terpolymers are compared to delineate how the side chain impacts the mesoscale morphology. By employing the alkylthio‐substituted terpolymer PBDPP‐TS, the new polymer solar cell (PSC) device realizes a good balance of a high V oc of 0.77 V and a high J sc over 15 mA cm?2, and thus realizes desirable PCE in excess of 8% and 9.5% in single junction and tandem PSC devices, respectively. The study indicates better control of domain purity will greatly improve performance of single junction DPP‐based PSCs toward 10% efficiency. More significantly, the utility of this stepwise side chain engineering can be readily expanded to other classes of well‐defined copolymers and triggers efficiency breakthroughs in novel terpolymers for photovoltaic and related electronic applications.  相似文献   

9.
To solve the stability issues of perovskite solar cells (PSC), here a novel interface engineering strategy that a versatile ultrathin 2D perovskite (5‐AVA)2PbI4 (5‐AVA = 5‐ammoniumvaleric acid) passivation layer that is in situ incorporated at the interface between (FAPbI3)0.88(CsPbBr3)0.12 and the hole transporting CuSCN is reported. Surface analysis using X‐ray photoelectron spectroscopy confirms the formation of 2D perovskite. Hysteresis is reduced by the interfacial 2D layer, which could be ascribed to improvement of interfacial charge extraction efficiency, associated with suppression of recombination. Moreover, introduction of the interface passivating layer enhances the moisture stability and photostability as compared to the control perovskite film due to hydrophobic nature of 2D perovskite. The unencapsulated device retains 98% of the initial power conversion efficiency (PCE) after 63 d under moisture exposure of about 10% in the dark. A PCE of the control device is boosted from 13.72 to 16.75% as a consequence of enhanced open‐circuit voltage (Voc) and fill factor along with slightly increased short‐circuit current density (Jsc), which results from reduced trap states of (FAPbI3)0.88(CsPbBr3)0.12 as evidenced by enhanced carrier lifetimes and charge extraction. The perovskite/hole transport material interface engineering gives insight into simultaneous improvements of PCE and device stability.  相似文献   

10.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   

11.
A tandem organic solar cell (OSC) is a valid structure to widen the photon response range and suppress the transmission loss and thermalization loss. In the past few years, the development of low‐bandgap materials with broad absorption in long‐wavelength region for back subcells has attracted considerable attention. However, wide‐bandgap materials for front cells that have both high short‐circuit current density (JSC) and open‐circuit voltage (VOC) are scarce. In this work, a new fluorine‐substituted wide‐bandgap small molecule nonfullerene acceptor TfIF‐4FIC is reported, which has an optical bandgap of 1.61 eV. When PBDB‐T‐2F is selected as the donor, the device offers an extremely high VOC of 0.98 V, a high JSC of 17.6 mA cm?2, and a power conversion efficiency of 13.1%. This is the best performing acceptor with such a wide bandgap. More importantly, the energy loss in this combination is 0.63 eV. These properties ensure that PBDB‐T‐2F:TfIF‐4FIC is an ideal candidate for the fabrication of tandem OSCs. When PBDB‐T‐2F:TfIF‐4FIC and PTB7‐Th:PCDTBT:IEICO‐4F are used as the front cell and the back cell to construct tandem solar cells, a PCE of 15% is obtained, which is one of best results reported to date in the field of organic solar cells.  相似文献   

12.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

13.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

14.
The Cs‐based inorganic perovskite solar cells (PSCs), such as CsPbI2Br, have made a striking breakthrough with power conversion efficiency (PCE) over 16% and potential to be used as top cells for tandem devices. Herein, I? is partially replaced with the acetate anion (Ac?) in the CsPbI2Br framework, producing multiple benefits. The Ac? doping can change the morphology, electronic properties, and band structure of the host CsPbI2Br film. The obtained CsPbI2?x Br(Ac)x perovskite films present lower trap densities, longer carrier lifetimes, and fast charge transportation compared to the host CsPbI2Br films. Interestingly, the CsPbI2?x Br(Ac)x PSCs exhibit a maximum PCE of 15.56% and an ultrahigh open circuit voltage (Voc) of 1.30 V without sacrificing photocurrent. Notably, such a remarkable Voc is among the highest values of the previously reported CsPbI2Br PSCs, while the PCE far exceeds all of them. In addition, the obtained CsPbI2?x Br(Ac)x PSCs exhibit high reproducibility and good stability. The stable CsPbI2?x Br(Ac)x PSCs with high Voc and PCE are desirable for tandem solar cell applications.  相似文献   

15.
In this work, both anode and cathode interfaces of p‐i‐n CH3NH3PbI3 perovskite solar cells (PVSCs) are simultaneously modified to achieve large open‐circuit voltage (Voc) and fill factor (FF) for high performance semitransparent PVSCs (ST‐PVSCs). At the anode, modified NiO serves as an efficient hole transport layer with appropriate surface property to promote the formation of smooth perovskite film with high coverage. At the cathode, a fullerene bisadduct, C60(CH2)(Ind), with a shallow lowest unoccupied molecular orbital level, is introduced to replace the commonly used phenyl‐C61‐butyric acid methyl ester (PCBM) as an alternative electron transport layer in PVSCs for better energy level matching with the conduction band of the perovskite layer. Therefore, the Voc, FF and power conversion efficiency (PCE) of the PVSCs increase from 1.05 V, 0.74 and 16.2% to 1.13 V, 0.80 and 18.1% when the PCBM is replaced by C60(CH2)(Ind). With the advantages of high Voc and FF, ST‐PVSCs are also fabricated using an ultrathin transparent Ag as cathode, showing an encouraging PCEs of 12.6% with corresponding average visible transmittance (AVT) over 20%. These are the highest PCEs reported for ST‐PVSCs with similar AVTs paving the way for using ST‐PVSCs as power generating windows.  相似文献   

16.
One of the most important factors that limits the efficiencies of bulk‐heterojunction organic solar cells (OSCs) is the modest open‐circuit voltage (Voc) due to their large voltage loss (Vloss) caused by significant nonradiative recombination loss. To boost the performance of OSCs toward their theoretical limit, developing high‐performance donor: acceptor systems featuring low Vloss with suppressed nonradiative recombination losses (<0.30 V) is desired. Herein, high performance OSCs based on a polymer donor benzodithiophene‐difluorobenzoxadiazole‐2‐decyltetradecyl (BDT‐ffBX‐DT) and perylenediimide‐based acceptors (PDI dimer with spirofluorene linker (SFPDI), PDI4, and PDI6) are reported which offer a high power conversion efficiency (PCE) of 7.5%, 56% external quantum efficiency associated with very high Voc (>1.10 V) and low Vloss (<0.60 V). A high Voc up to 1.23 V is achieved, which is among the highest values reported for OSCs with a PCE beyond 6%, to date. These attractive results are benefit from the suppressed nonradiative recombination voltage loss, which is as low as 0.20 V. This value is the lowest value for OSCs so far and is comparable to high performance crystalline silicon and perovskite solar cells. These results show that OSCs have the potential to achieve comparable Voc and voltage loss as inorganic photovoltaic technologies.  相似文献   

17.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   

18.
Charge transport layers play an important role in determining the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, it has proven challenging to produce thin and compact charge transport layers via solution processing techniques. Herein, a hot substrate deposition method capable of improving the morphology of high‐coverage hole‐transport layers (HTLs) and electron‐transport layers (ETLs) is reported. PSC devices using HTLs deposited on a hot substrate show improvement in the open‐circuit voltage (Voc) from 1.041 to 1.070 V and the PCE from 17.00% to 18.01%. The overall device performance is then further enhanced with the hot substrate deposition of ETLs as the Voc and PCE reach 1.105 V and 19.16%, respectively. The improved performance can be explained by the decreased current leakage and series resistance, which are present in PSCs with rough and discontinuous HTLs and ETLs.  相似文献   

19.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

20.
All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号