首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocatalytic reduction of nitrogen (N2) with water (H2O) as the reducing agent holds great promise as a sustainable future technology for the synthesis of ammonia (NH3). Herein, the effect of oxygen vacancies and electron‐rich Cuδ+ on the performance of zinc‐aluminium layered double hydroxide (ZnAl‐LDH) nanosheet photocatalysts for N2 reduction to NH3 under UV–vis excitation is systematically explored. Results show that a 0.5%‐ZnAl‐LDH nanosheet photocatalyst (containing 0.5 mol% Cu by metal basis) affords a remarkable NH3 production rate of 110 µmol g?1 h?1 and excellent stability in pure water. The X‐ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory calculations reveal that Cu addition imparts oxygen vacancies and coordinatively unsaturated Cuδ+ (δ < 2) with electron‐rich property in the ZnAl‐LDH nanosheets, both of which readily contribute to efficient separation and transfer of photogenerated electrons and holes and promote N2 adsorption, thereby both activating N2 and facilitating its multielectrons reduction to NH3.  相似文献   

2.
In this work, porous monolayer nickel‐iron layered double hydroxide (PM‐LDH) nanosheets with a lateral size of ≈30 nm and a thickness of ≈0.8 nm are successfully synthesized by a facile one‐step strategy. Briefly, an aqueous solution containing Ni2+ and Fe3+ is added dropwise to an aqueous formamide solution at 80 °C and pH 10, with the PM‐LDH product formed within only 10 min. This fast synthetic strategy introduces an abundance of pores in the monolayer NiFe‐LDH nanosheets, resulting in PM‐LDH containing high concentration of oxygen and cation vacancies, as is confirmed by extended X‐ray absorption fine structure and electron spin resonance measurements. The oxygen and cation vacancies in PM‐LDH act synergistically to increase the electropositivity of the LDH nanosheets, while also enhancing H2O adsorption and bonding strength of the OH* intermediate formed during water electrooxidation, endowing PM‐LDH with outstanding performance for the oxygen evolution reaction (OER). PM‐LDH offers a very low overpotential (230 mV) for OER at a current density of 10 mA cm?2, with a Tafel slope of only 47 mV dec?1, representing one of the best OER performance yet reported for a NiFe‐LDH system. The results encourage the wider utilization of porous monolayer LDH nanosheets in electrocatalysis, catalysis, and solar cells.  相似文献   

3.
This study reports the synthesis of ultrafine NiFe‐layered double hydroxide (NiFe‐LDH) nanosheets, possessing a size range between 1.5 and 3.0 nm with a thickness of 0.6 nm. Abundant metal and oxygen vacancies impart the ultrafine nanosheets with semi‐metallic character, and thus superior charge transfer properties and electrochemical water oxidation performance with overpotentials (η) of 254 mV relative to monolayer LDH nanosheets (η of 280 mV) or bulk LDH materials (η of 320 mV) at 10 mA cm?2. These results are highly encouraging for the future application of ultrafine monolayer LDH nanosheets in electronics, solar cells, and catalysis.  相似文献   

4.
To achieve the energy‐effective ammonia (NH3) production via the ambient‐condition electrochemical N2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen‐vacancy‐rich TiO2 nanoparticles (NPs) in situ grown on the Ti3C2Tx nanosheets (TiO2/Ti3C2Tx) are prepared via a one‐step ethanol‐thermal treatment of the Ti3C2Tx MXene. The oxygen vacancies act as the main active sites for the NH3 synthesis. The highly conductive interior untreated Ti3C2Tx nanosheets could not only facilitate the electron transport but also avoid the self‐aggregation of the TiO2 NPs. Meanwhile, the TiO2 NPs generation could enhance the SSA of the Ti3C2Tx in return. Accordingly, the as‐prepared electrocatalyst exhibits an NH3 yield of 32.17 µg h?1 mg?1cat. at ?0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at ?0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO2 (101)/Ti3C2Tx compared with Ti3C2Tx or TiO2 (101) alone.  相似文献   

5.
The role of vacancy defects is demonstrated to be positive in various energy‐related processes. However, introducing vacancy defects into single‐crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this study deliberately introduces oxygen defects into single‐crystalline ultrathin Co3O4 nanosheets with O‐terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As‐prepared defect‐rich Co3O4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec?1 for the oxygen evolution reaction (OER), which is among the best Co‐based OER catalysts to date and even more active than the state‐of‐the‐art IrO2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second‐layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. This mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect‐based electrocatalysts.  相似文献   

6.
The Haber‐Bosch process can be replaced by the ambient electrocatalytic N2 reduction reaction (NRR) to produce NH3 if suitable electrocatalysts can be developed. However, to develop high performance N2 fixation electrocatalysts, a key issue to be resolved is to achieve efficient hydrogenation of N2 without interference by the thermodynamically favored hydrogen evolution reaction (HER). Herein, in‐operando created strong Li–S interactions are reported to empower the S‐rich MoS2 nanosheets with superior NRR catalytic activity and HER suppression ability. The Li+ interactions with S‐edge sites of MoS2 can effectively suppress hydrogen evolution reaction by reducing H* adsorption free energy from 0.03 to 0.47 eV, facilitate N2 adsorption by increasing N2 adsorption free energy from –0.32 to –0.70 eV and enhance electrocatalytic N2 reduction activity by decreasing the activation energy barrier of the reaction control step (*N2 → *N2H) from 0.84 to 0.42 eV. A NH3 yield rate of 43.4 μg h?1 mg?1 MoS2 with a faradaic efficiency (FE) of 9.81% can be achieved in presence of strong Li–S interactions, more than 8 and 18 times by the same electrocatalyst in the absence of Li–S interactions. This report opens a new way to design and develop catalysts and catalysis systems.  相似文献   

7.
Synthesis of highly efficient nonprecious metal electrocatalysts for the oxygen reduction reaction (ORR) superior to platinum (Pt) is still a big challenge. Herein, a new highly active ORR electrocatalyst is reported based on graphene layers‐wrapped Fe/Fe5C2 nanoparticles supported on N‐doped graphene nanosheets (GL‐Fe/Fe5C2/NG) through simply annealing a mixture of bulk graphitic carbon nitride (g‐C3N4) and ferrocene. An interesting exfoliation–denitrogen mechanism underlying the conversion of bulk g‐C3N4 into N‐doped graphene nanosheets is revealed. Owing to the high graphitic degree, optimum N‐doping level and sufficient active sites from the graphene layers‐wrapped Fe/Fe5C2 nanoparticles, the as‐prepared GL‐Fe/Fe5C2/NG electrocatalyst obtained at 800 °C exhibits outstanding ORR activity with a 20 mV more positive half‐wave potential than the commercial Pt/C catalyst in 0.1 m KOH solution and a comparable onset potential of 0.98 V. This makes GL‐Fe/Fe5C2/NG an outstanding electrocatalyst for ORR in alkaline solution.  相似文献   

8.
The altering of electronic states of metal oxides offers a promising opportunity to realize high‐efficiency surface catalysis, which play a key role in regulating polysulfides (PS) redox in lithium–sulfur (Li–S) batteries. However, little effort has been devoted to understanding the relationship between the electronic state of metal oxides and a catalyst's properties in Li–S cells. Herein, defect‐rich heterojunction electrocatalysts composed of ultrathin TiO2‐x nanosheets and carbon nanotubes (CNTs) for Li–S batteries are reported. Theoretical simulations indicate that oxygen vacancies and heterojunction can enhance electronic conductivity and chemical adsorption. Spectroscopy and electrochemical techniques further indicate that the rich surface vacancies in TiO2‐x nanosheets result in highly activated trapping sites for LiPS and lower energy barriers for fast Li ion mobility. Meanwhile, the redistribution of electrons at the heterojunction interfaces realizes accelerated surface electron exchange. Coupled with a polyacrylate terpolymer (LA132) binder, the CNT@TiO2‐x–S electrodes exhibit a long cycle life of more than 300 cycles at 1 C and a high area capacity of 5.4 mAh cm?2. This work offers a new perspective on understanding catalyst design in energy storage devices through band engineering.  相似文献   

9.
The metal‐metalloid materials have received a massive interest as oxygen‐evolving catalysts due to their ability for charge transfer between different elements and modified electronic structures lowering the kinetic energy barriers of the electrochemical processes. Herein, a facile and systematic preparation of metal borides by chemical reduction is reported, with morphologies ranging from nanoparticles to nanosheets which is driven by a careful selection of metal salts solution. The iron doping in cobalt boride nanosheets is found to be an effective approach to further tune the water oxidation activity. The as‐prepared catalyst exhibited superior oxygen evolution performance in 1.0 m KOH as the optimized ternary CoFe boride needs an overpotential of 265 mV to achieve a current density of 10 mA cm?2 at a mass loading of 0.3 mg cm?2.  相似文献   

10.
Electroreduction of carbon dioxide (CO2) into high‐value and readily collectable liquid products is vital but remains a substantial challenge due to the lack of highly efficient and robust electrocatalysts. Herein, Bi‐based metal‐organic framework (CAU‐17) derived leafy bismuth nanosheets with a hybrid Bi/Bi? O interface (Bi NSs) is developed, which enables CO2 reduction to formic acid (HCOOH) with high activity, selectivity, and stability. Specially, the flow cell configuration is employed to eliminate the diffusion effect of CO2 molecules and simultaneously achieve considerable current density (200 mA cm?2) for industrial application. The faradaic efficiency for transforming CO2 to HCOOH can achieve over 85 or 90% in 1 m KHCO3 or KOH for at least 10 h despite a current density that exceeds 200 mA cm?2, outperforming most of the reported CO2 electroreduction catalysts. The hybrid Bi/Bi? O surface of leafy bismuth nanosheets boosts the adsorption of CO2 and protects the surface structure of the as‐prepared leafy bismuth nanosheets, which benefits its activity and stability for CO2 electroreduction. This work shows that modifying electrocatalysts by surface oxygen groups is a promising pathway to regulate the activity and stability for selective CO2 reduction to HCOOH.  相似文献   

11.
Recently, defect engineering has been used to intruduce half‐metallicity into selected semiconductors, thereby significantly enhancing their electrical conductivity and catalytic/electrocatalytic performance. Taking inspiration from this, we developed a novel bifunctional electrode consisting of two monolayer thick manganese dioxide (δ‐MnO2) nanosheet arrays on a nickel foam, using a novel in‐situ method. The bifunctional electrode exposes numerous active sites for electrocatalytic rections and displays excellent electrical conductivity, resulting in strong performance for both HER and OER. Based on detailed structure analysis and density functional theory (DFT) calculations, the remarkably OER and HER activity of the bifunctional electrode can be attributed to the ultrathin δ‐MnO2 nanosheets containing abundant oxygen vacancies lead to the formation od Mn3+ active sites, which give rise to half‐metallicity properties and strong H2O adsorption. This synthetic strategy introduced here represents a new method for the development of non‐precious metal Mn‐based electrocatalysts for eddicient energy conversion.  相似文献   

12.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

13.
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (?98 μA cm?2) compared to that of g‐C3N4 photocathode (?32 μA cm?2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of ?133 μA cm?2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.  相似文献   

14.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

15.
Covalent organic frameworks (COFs) are crystalline organic polymers with tunable structures. Here, a COF is prepared using building units with highly flexible tetrahedral sp3 nitrogens. This flexibility gives rise to structural changes which generate mesopores capable of confining very small (<2 nm sized) non‐noble‐metal‐based nanoparticles (NPs). This nanocomposite shows exceptional activity toward the oxygen‐evolution reaction from alkaline water with an overpotential of 258 mV at a current density of 10 mA cm?2. The overpotential observed in the COF‐nanoparticle system is the best in class, and is close to the current record of ≈200 mV for any noble‐metal‐free electrocatalytic water splitting system—the Fe–Co–Ni metal‐oxide‐film system. Also, it possesses outstanding kinetics (Tafel slope of 38.9 mV dec?1) for the reaction. The COF is able to stabilize such small‐sized NP in the absence of any capping agent because of the COF–Ni(OH)2 interactions arising from the N‐rich backbone of the COF. Density‐functional‐theory modeling of the interaction between the hexagonal Ni(OH)2 nanosheets and the COF shows that in the most favorable configuration the Ni(OH)2 nanosheets are sandwiched between the sp3 nitrogens of the adjacent COF layers and this can be crucial to maximizing their synergistic interactions.  相似文献   

16.
Photocatalysts with oxygen vacancies (OVs) have exhibited exciting activity in N2 photofixation due to their superiority in capture and activation of N2. However, the surface OVs are easily oxidized by seizing the oxygen atoms from water or oxygen during the catalytic reaction. Here, it is reported that the grain boundaries (GBs) in nanoporous WO3 induce plenty of operando OVs under light irradiation to significantly boost catalytic activity toward N2 photofixation. Impressively, nanoporous WO3 with abundant GBs (WO3‐600) exhibit an ammonia production rate of 230 µmol gcat.?1 h?1 without any sacrificial agents at room temperature, 17 times higher than that for WO3 nanoparticles without GBs. Moreover, WO3‐600 also manifests remarkable stability by maintaining nearly ≈100% catalytic activity after ten successive reaction rounds. Further mechanistic studies reveal that both OVs and GBs regulate the band structures of WO3 nanocrystals, as well as favor the delivery of photogenerated electrons to adsorbed N2 by enhancing W–O covalency. More importantly, plenty of operando OVs induced by GBs generate during catalytic reaction, directly contributing to the excellent catalytic performance for WO3‐600. This work opens a novel avenue to developing efficient photocatalysts by construction of operando OVs.  相似文献   

17.
An enormous research effort is currently being directed towards the development of efficient visible‐light‐driven photocatalysts for renewable energy applications including water splitting, CO2 reduction and alcohol photoreforming. Layered double hydroxide (LDH)‐based photocatalysts have emerged as one of the most promising candidates to replace TiO2‐based photocatalysts for these reactions, owing to their unique layered structure, compositional flexibility, controllable particle size, low manufacturing cost and ease of synthesis. By introducing defects into LDH materials through the control of their size to the nanoscale, the atomic structure, surface defect concentration, and electronic and optical characteristics of LDH materials can be strategically engineered for particular applications. Furthermore, through the use of advanced characterization techniques such as X‐ray absorption fine structure, positron annihilation spectrometry, X‐ray photoelectron spectroscopy, electron spin resonance, density‐functional theory calculations, and photocatalytic tests, structure‐activity relationships can be established and used in the rational design of high‐performance LDH‐based photocatalysts for efficient solar energy capture. LDHs thus represent a versatile platform for semiconductor photocatalyst development with application potential across the energy sector.  相似文献   

18.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

19.
Photocatalytic CO2 reduction is an effective means to generate renewable energy. It involves redox reactions, reduction of CO2 and oxidation of water, that leads to the production of solar fuel. Significant research effort has therefore been made to develop inexpensive and practically sustainable semiconductor‐based photocatalysts. The exploration of atomic‐level active sites on the surface of semiconductors can result in an improved understanding of the mechanism of CO2 photoreduction. This can be applied to the design and synthesis of efficient photocatalysts. In this review, atomic‐level reactive sites are classified into four types: vacancies, single atoms, surface functional groups, and frustrated Lewis pairs (FLPs). These different photocatalytic reactive sites are shown to have varied affinity to reactants, intermediates, and products. This changes pathways for CO2 reduction and significantly impacts catalytic activity and selectivity. The design of a photocatalyst from an atomic‐level perspective can therefore be used to maximize atomic utilization efficiency and lead to a high selectivity. The prospects for fabrication of effective photocatalysts based on an in‐depth understanding are highlighted.  相似文献   

20.
A highly efficient and durable electrocatalyst of Pd hydride nanocubes encapsulated within 2D amorphous Ni‐B nanosheets is reported. The PdH0.43 nanocubes are first synthesized via a simple N ,N ‐dimethylformamide thermal treatment. The as‐synthesized PdH0.43 nanocubes are then encapsulated in 2D amorphous NiB nanosheets by NaBH4 reduction in the presence of nickel species. During the NaBH4 treatment, the PdH0.43 can be further transformed into PdH0.706 due to the presence of endogenous H2. Electrochemical studies demonstrate that the degree of hydride of Pd nanocubes (PdHx ) plays an important role in the enhancement of their oxygen reduction reaction (ORR) activity. With increasing x value, both the activity and stability increase significantly. At 0.90 V versus reversible hydrogen electrode, the ORR activity of PdH0.706 @Ni‐B reaches 1.05 A mgPd?1, which is nearly five times higher than that of the state‐of‐the‐art Pt catalysts. Accelerated durability tests show that even after 10 000 potential cycles, there is negligible shift in their half‐wave potential and no shape and structure change occurs, indicating the incorporation of amorphous 2D Ni‐B nanosheets can greatly improve their stability without compromising their activity. The present study illustrates the importance of high degree of hydride and presence of amorphous Ni‐B nanosheets on the enhancement of ORR activity for Pd‐based electrocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号