首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most efficient electrocatalyst for the hydrogen evolution reaction (HER) is a Pt‐based catalyst, but its high cost and nonperfect efficiency hinder wide‐ranging industrial/technological applications. Here, an electrocatalyst of both ruthenium (Ru) single atoms (SAs) and N‐doped‐graphitic(GN)‐shell‐covered nitrided‐Ru nanoparticles (NPs) (having a Ru‐Nx shell) embedded on melamine‐derived GN matrix { 1 : [Ru(SA)+Ru(NP)@RuNx@GN]/GN}, which exhibits superior HER activity in both acidic and basic media, is presented. In 0.5 m H2SO4/1 m KOH solutions, 1 shows diminutive “negative overpotentials” (?η = |η| = 10/7 mV at 10 mA cm?2, lowest ever) and high exchange current densities (4.70/1.96 mA cm?2). The remarkable HER performance is attributed to the near‐zero free energies for hydrogen adsorption/desorption on Ru(SAs) and the increased conductivity of melamine‐derived GN sheets by the presence of nitrided‐Ru(NPs). The nitridation process forming nitrided‐Ru(NPs), which are imperfectly covered by a GN shell, allows superb long‐term operation durability. The catalyst splits water into molecular oxygen and hydrogen at 1.50/1.40 V (in 0.1 m HClO4/1 m KOH), demonstrating its potential as a ready‐to‐use, highly effective energy device for industrial applications.  相似文献   

2.
A conventional water electrolyzer consists of two electrodes, each of which is embedded with a costly and rare electrocatalyst, typically IrO2/C for oxygen evolution reaction (OER) and Pt/C for hydrogen evolution reaction (HER), respectively. HER and OER electrocatalysts usually require very different pH values to keep them stable and active. Thus, the development of earth‐abundant nonprecious metal catalysts for both HER and OER is of great importance to practical applications. This work reports the results of integrated water electrolysis using the hybrids of electrospun La0.5(Ba0.4Sr0.4Ca0.2)0.5Co0.8Fe0.2O3–δ (L‐0.5) perovskite nanorods attached to reduced graphene oxide (rGO) nanosheets as bifunctional electrodes. Via rationalizing the composition and morphology of L‐0.5/rGO nanohybrids, excellent catalytic performance and stability toward OER and HER are achieved in alkaline media. The operating voltage of integrated L‐0.5/rGO electrolyzer is tested to be 1.76 V at 50 mA cm–2, which is close to that of the commercially available IrO2/C‐Pt/C couple (1.76 V @ 50 mA cm–2). Such a bifunctional electrocatalyst could be extended toward practical electrolysis use with low expanse and high efficiency. More generally, the protocol described here broadens our horizons in terms of the designs and the diverse functionalities of catalysts for use in various applications.  相似文献   

3.
To improve the utilization efficiency of precious metals, metal‐supported materials provide a direction for fabricating highly active and stable heterogeneous catalysts. Herein, carbon cloth (CC)‐supported Earth‐abundant CoS2 nanosheet arrays (CoS2/CC) are presented as ideal substrates for ultrafine Pt deposition (Pt‐CoS2/CC) to achieve remarkable performance toward the hydrogen and oxygen evolution reactions (HER/OER) in alkaline solutions. Notably, the Pt‐CoS2/CC hybrid delivers an overpotential of 24 mV at 10 mA cm?2 and a mass activity of 3.89 A Ptmg?1, which is 4.7 times higher than that of commercial Pt/C, at an overpotential of 130 mV for catalyzing the HER. An alkali‐electrolyzer using Pt‐CoS2/CC as a bifunctional electrode enables a water‐splitting current density of 10 mA cm?2 at a low voltage of 1.55 V and can sustain for more than 20 h, which is superior to that of the state‐of‐the‐art Pt/C+RuO2 catalyst. Further experimental and theoretical simulation studies demonstrate that strong electronic interaction between Pt and CoS2 synergistically optimize hydrogen adsorption/desorption behaviors and facilitate the in situ generation of OER active species, enhancing the overall water‐splitting performance. This work highlights the regulation of interfacial and electronic synergy in pursuit of highly efficient and durable supported catalysts for hydrogen and oxygen electrocatalytic applications.  相似文献   

4.
The search for Pt‐free electrocatalysts exceeding pH‐universal hydrogen evolution reaction (HER) activities when compared to the state‐of‐the‐art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH‐universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm?2 in 0.5 m H2SO4, 1.0 m KOH, and 1.0 m phosphate‐buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.  相似文献   

5.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

6.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

7.
Photoelectrodes without a p–n junction are often limited in efficiency by charge recombination at semiconductor surfaces and slow charge transfer to electrocatalysts. This study reports that tin oxide (SnOx) layers applied to n‐Si wafers after forming a thin chemically oxidized SiOx layer can passivate the Si surface while producing ≈620 mV photovoltage under 100 mW cm?2 of simulated sunlight. The SnOx layer makes ohmic contacts to Ni, Ir, or Pt films that act as precatalysts for the oxygen‐evolution reaction (OER) in 1.0 m KOH(aq) or 1.0 m H2SO4(aq). Ideal regenerative solar‐to‐O2(g) efficiencies of 4.1% and 3.7%, respectively, are obtained in 1.0 m KOH(aq) with Ni or in 1.0 m H2SO4(aq) with Pt/IrOx layers as OER catalysts. Stable photocurrents for >100 h are obtained for electrodes with patterned catalyst layers in both 1.0 m KOH(aq) and 1.0 m H2SO4(aq).  相似文献   

8.
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.  相似文献   

9.
The achievement of effective alkaline hydrogen production from water electrolysis is an active field of research. Herein, an integrated electrode composed of crystalline Ni(OH)2 and amorphous NiMoOx is fabricated onto nickel foam (denoted as Ni(OH)2–NiMoOx/NF). The hydrogen evolution reaction (HER) kinetics are optimized along with phase transformation process during soaking operation. An overpotential of 36 mV to drive 10 mA cm?2 along with the low Tafel slope of 38 mV dec?1 reveals the catalyst's excellent HER performance and a Heyrovsky‐step‐controlled HER mechanism. When assembled into a urea‐assisted water electrolyzer, a voltage of 1.42 V can reach 10 mA cm?2. Further experiments and Fourier transform infrared spectroscopy (FTIR) results illustrate the synergy effect between crystalline and amorphous areas and the optimized water dissociation step. Crystalline Ni(OH)2 serves as the scissor for water dissociation in an alkali environment to produce H*, while the amorphous NiMoOx layer serves as the location for H* adsorption and H2 desorption.  相似文献   

10.
Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2 formation rate, and exchange current density of 214.7 µmol s?1 g?1cat (at only 100 mV overpotential) and 279.07 µA cm?2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.  相似文献   

11.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

12.
Searching for highly efficient and cost‐effective electrocatalysts toward the hydrogen evolution reaction (HER) in alkaline electrolyte is highly desirable for the development of alkaline water splitting, but still remains a significant challenge. Herein, the rational design of Cr‐doped Co4N nanorod arrays grown on carbon cloth (Cr–Co4N/CC) that can efficiently catalyze the HER in alkaline media is reported. It displays outstanding performance, with the exceptionally small overpotential of 21 mV to obtain the current density of 10 mA cm?2 and good stability in 1.0 m KOH, which is even better than the commercial Pt/C electrocatalyst, and much lower than most of the reported transition metal nitride‐based and other non‐noble metal‐based electrocatalysts toward the alkaline HER. Density functional theory (DFT) calculations and experimental results reveal that the Cr atoms not only act as oxophilic sites for boosting water adsorption and dissociation, but also modulate the electronic structure of Co4N to endow optimized hydrogen binding abilities on Co atoms, thereby leading to accelerating both the alkaline Volmer and Heyrovsky reaction kinetics. In addition, this strategy can be extended to other metals (such as Mo, Mn, and Fe) doped Co4N electrocatalysts, thus may open up a new avenue for the rational design of highly efficient transition metal nitride‐based HER catalysts and beyond.  相似文献   

13.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   

14.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   

15.
It is demonstrated that amorphous cobalt boride (Co2B) prepared by the chemical reduction of CoCl2 using NaBH4 is an exceptionally efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline electrolytes and is simultaneously active for catalyzing the hydrogen evolution reaction (HER). The catalyst achieves a current density of 10 mA cm?2 at 1.61 V on an inert support and at 1.59 V when impregnated with nitrogen‐doped graphene. Stable performance is maintained at 10 mA cm?2 for at least 60 h. The optimized catalyst, Co2B annealed at 500 °C (Co2B‐500) evolves oxygen more efficiently than RuO2 and IrO2, and its performance matches the best cobalt‐based catalysts reported to date. Co2B is irreversibly oxidized at OER conditions to form a CoOOH surface layer. The active form of the catalyst is therefore represented as CoOOH/Co2B. EXAFS observations indicate that boron induces lattice strain in the crystal structure of the metal, which potentially diminishes the thermodynamic and kinetic barrier of the hydroxylation reaction, formation of the OOH* intermediate, a key limiting step in the OER.  相似文献   

16.
Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion.  相似文献   

17.
Herein, the authors present the development of novel 0D–2D nanohybrids consisting of a nickel‐based bimetal phosphorus trisulfide (Ni1?xFexPS3) nanomosaic that decorates on the surface of MXene nanosheets (denoted as NFPS@MXene). The nanohybrids are obtained through a facile self‐assemble process of transition metal layered double hydroxide (TMLDH) on MXene surface; followed by a low temperature in situ solid‐state reaction step. By tuning the Ni:Fe ratio, the as‐synthesized NFPS@MXene nanohybrids exhibit excellent activities when tested as electrocatalysts for overall water splitting. Particularly, with the initial Ni:Fe ratio of 7:3, the obtained Ni0.7Fe0.3PS3@MXene nanohybrid reveals low overpotential (282 mV) and Tafel slope (36.5 mV dec?1) for oxygen evolution reaction (OER) in 1 m KOH solution. Meanwhile, the Ni0.9Fe0.1PS3@MXene shows low overpotential (196 mV) for the hydrogen evolution reaction (HER) in 1 m KOH solution. When integrated for overall water splitting, the Ni0.7Fe0.3PS3@MXene || Ni0.9Fe0.1PS3@MXene couple shows a low onset potential of 1.42 V and needs only 1.65 V to reach a current density of 10 mA cm?2, which is better than the all noble metal IrO2 || Pt/C electrocatalyst (1.71 mV@10 mA cm?2). Given the chemical versatility of Ni1?xFexPS3 and the convenient self‐assemble process, the nanohybrids demonstrated in this work are promising for energy conversion applications.  相似文献   

18.
As a non‐toxic species, Zn fulfills a multitude of biological roles, but its promoting effect on electrocatalysis has been rarely explored. Herein, the theoretic predications and experimental investigations that nonelectroactive Zn behaves as an effective promoter for CoP‐catalyzed hydrogen evolution reaction (HER) in both acidic and alkaline media is reported. Density function theory calculations reveal that Zn doing leads to more thermal‐neutral hydrogen adsorption free energy and thus enhanced HER activity for CoP catalyst. Electrochemical tests show that a Zn0.08Co0.92P nanowall array on titanium mesh (Zn0.08Co0.92P/TM) needs overpotentials of only 39 and 67 mV to drive a geometrical catalytic current of 10 mA cm‐2 in 0.5 m H2SO4 and 1.0 m KOH, respectively. This Zn0.08Co0.92P/TM is also superior in activity over CoP/TM for urea oxidation reaction (UOR), driving 115 mA cm‐2 at 0.6 V in 1.0 m KOH with 0.5 m urea. The high HER and UOR activity of this bifunctional electrode enables a Zn0.08Co0.92P/TM‐based two‐electrode electrolyzer for energy‐saving hydrogen production, offering 10 mA cm‐2 at a low voltage of 1.38 V with strong long‐term electrochemical stability.  相似文献   

19.
An efficient water splitting electrocatalyst is presented. Cheap and sustainable cellulose filter paper, infiltrated with nickel acetate as the nickel source, and phenanthroline as a ligand and nitrogen source are carbonized together. Nitrogen functionalities turn out to be crucial coordination sites for the supported Ni/NiO(OH) particles. This simple and scalable one step procedure leads to powders, but also to complete membranes made of ≈10 wt% Ni, supported on nitrogen functionalized carbon. The non‐noble catalyst shows a low onset potential (330 mV vs reversible hydrogen electrode), high current density (e.g., j > 25 mA cm?­2 at η = 430 mV), excellent kinetics (Tafel slope of 44 mV dec?1), and a very favorable stability (<5% decay after 10 h electrolysis) in the oxygen evolution. The performance is similar or even better compared to state‐of‐the‐art noble metal catalysts (e.g., IrO2, Ir/C, Ru/C, and Pt/C). Because of the simple, cheap, and scalable preparation procedure the catalyst is highly promising for practical low price/tech applications. Interestingly, the system is also active in the hydrogen evolution reaction, leading to a promising bifunctional catalyst. The benchmark characteristics are η10 = 390 mV for oxygen evolution and η10 = 190 mV for hydrogen evolution, that is, an overall efficiency of 68% at 10 mA current density.  相似文献   

20.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号