首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号