首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier we reported that seed pre-treatment with PHF promoted early seedling growth and salinity tolerance in wheat. As a way forward, experiments were conducted to investigate whether and to what extent foliar spray of fullerol could influence growth and physio-biochemical responses in salt stressed wheat. In a control experiment, seeds were sown in sand filled pots (500 g) under control and 150 mM NaCl stress. After 15 days, foliar spray of fullerol at 0, 10, 40, 80 and 120 nM concentration was applied and the data for various morpho-biochemical attributes recorded after 2 weeks. Fullerol caused improvements in shoot growth attributes while had least effect on root growth traits. Increase in total chlorophyll while reduction in Car/Chl ratio was evident under salinity in response to fullerol spray. Only 40 and 80 nM spray treatments improved antioxidant activities and reduced H2O2 contents while MDA contents which increased due to salt stress, remained unaffected by foliar spray. Fullerol spray also improved sugars, proline and free amino acids under salinity. During second experiment under natural conditions, 60 day old plants grown in sand filled pots (10 kg) under 0 and 150 mM NaCl were foliar sprayed with selected concentrations (0, 40 and 80 nM) of fullerol. Salinity inhibited gas exchange and grain yield attributes while fullerol-sprayed plants exhibited recovery. Fullerol spray resulted in high root and shoot K+ and shoot Ca2+ contents. Also, increase in shoot and root P, while lesser shoot Na+ was recorded due to 80 nM spray under salt stress. Overall, 40 and 80 nM fullerol spray improved photosynthetic activity, osmolytes accumulation and altered tissue ion compartmentalization which contributed to improvement in grain yield attributes under salinity.  相似文献   

2.
Switchgrass (Panicum virgatum L.) is a warm perennial grass with valuable characteristics as a biofuel crop. To avoid competition with food crops, biofuel crops will be likely relegated to less productive soils such as marginal lands. Consequently, the salinity and water scarcity problems that commonly affect marginal lands compromise biofuel crop germination, emergence, and seedling establishment. The aims of this study were to study the germination and seedling growth of switchgrass under salinity and water stress and to describe the morpho-anatomical responses of the roots and leaves in the seedlings to these stress conditions. The effect of salt and water stress was assessed using sodium chloride (NaCl) and polyethylene glycol (PEG) 8000 at the same water potentials of ??0.8, ??1.0, and ??1.2 MPa. Seeds were moist prechilled for 7 days at 5 °C and germinated at 30/15 °C (8 h light/16 h dark). NaCl treatments (??0.8 and ??1.0 MPa) delayed germination rates but did not reduce the final germination percentage, whereas at a lower potential (??1.2 MPa), the final germination percentage was diminished. The effects of PEG (??1.0 and ??1.2 MPa) on the germination rate and final percentage were more detrimental than those induced by isosmotic concentrations of NaCl. PEG and NaCl reduced significantly the vigor index of ??0.8 to ??1.2 MPa. The morpho-anatomical changes such as the reduction in the root cross-sectional area and the thickening of the endodermis walls for both stress conditions and aerenchyma formation in the cortex under salinity could significantly contribute in the survival and tolerance during the early seedling stages.  相似文献   

3.
The effect of paclobutrazol, a plant growth regulator, on antioxidant defense system was investigated in Catharanthus roseus (L.) G. Don. plants subjected to NaCl stress. The growth parameters were significantly reduced under 80 mM NaCl treatment; however, this growth inhibition was less in paclobutrazol-treated (15 mg l−1 plant−1) plants. The non-enzymatic antioxidants ascorbic acid and reduced glutathione were affected under NaCl stress and they increased significantly under paclobutrazol treatment when compared to NaCl treated as well as control plants (P ≤ 0.05). The activity of antioxidant enzyme ascorbate peroxidase showed a significant enhancement under salinity stress. The catalase activity decreased in roots of NaCl-treated plants, but recovered with paclobutrazol treatment. The results suggested that paclobutrazol have significant role in contributing salt stress tolerance of C. roseus by improving the components of antioxidant defense system.  相似文献   

4.
Enhancement of salt (NaCl) tolerance by pretreatment with sublethal dose (50 mM) of NaCl was investigated in V. radiata seedlings. NaCl stress caused drastic effects on roots compared to shoots. Accompanying reductions in length, number of root hairs and branches, roots became stout, brittle and brown in color. Salt stress caused gradual reduction in chlorophyll, carotenoid pigment contents and chlorophyll fluorescence intensity also. Superoxide dismutase and catechol peroxidase activities increased under stress in both roots and leaves. But catalase activity showed an increase in roots and decrease in leaves. In these seedlings, the oxidative stress has been observed under salinity stress and the level of proline, H2O2 and malondialdehyde content were increased. But pretreatment with sublethal dose of NaCl was able to overcome the adverse effects of stress imposed by NaCl to variable extents by increasing growth and photosynthetic pigments of the seedlings, modifying the activities of antioxidant enzymes, reducing malondialdehyde and H2O2 content and increasing accumulation of osmolytes like proline. Thus, mungbean plants can acclimate to lethal level of salinity by pretreatment with sublethal level of NaCl, improving their health and production under saline condition.  相似文献   

5.
Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.  相似文献   

6.
Zinc deficiency and salinity are well-documented soil problems and often occur simultaneously in cultivated soils. Usually, plants respond to environmental stress factors by activating their antioxidative defense mechanisms. The antioxidative response of wheat genotypes to salinity in relation to Zn nutrition is not well understood. So, we investigated the effect of Zn nutrition on the growth, membrane permeability and sulfhydryl group (–SH groups) content of root cells and antioxidative defense mechanisms of wheat plants exposed to salt stress. In a hydroponic experiment, three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) with different Zn-deficiency tolerance were exposed to adequate (1 μM Zn) and deficient (no Zn) Zn supply and three salinity levels (0, 60, and 120 mM NaCl). The results obtained showed that adequate Zn nutrition counteracted the detrimental effect of 60 mM NaCl level on the growth of all three wheat genotypes while it had no effect on the root and shoot growth of ‘Rushan’ and ‘Kavir’ at the 120 mM NaCl treatment. At the 0 and 60 mM NaCl treatments, Zn application decreased root membrane permeability while increased –SH group content and root activity of catalase (CAT) and superoxide dismutase (SOD) in ‘Rushan’ and ‘Kavir’. In contrast, Zn had no effect on the root membrane permeability and –SH group content of ‘Rushan’ and ‘Kavir’ exposed to the 120 mM NaCl treatment. At all salinity levels, ‘Cross’ plants supplied with Zn had lower root membrane permeability and higher –SH group content compared to those grown under Zn-deficient conditions. At the 0 and 60 salinity levels, Zn-deficient roots of Kavir and Rushan genotype leaked significantly higher amounts of Fe and K than the Zn-sufficient roots. In contrast, at the 120 mM treatment, Zn application had no effect or slightly increased Fe and K concentration in the root ion leakage of these wheat genotypes. For ‘Cross’, at all salinity levels, Zn-deficient roots leaked significantly higher amounts of Fe and K compared with the Zn-sufficient roots. The differential tolerance to salt stress among wheat genotypes examined in this study was related to their tolerance to Zn-deficiency, –SH group content, and root activity of CAT and SOD. Greater tolerance to salinity of Zn-deficiency tolerant genotype ‘Cross’ is probably associated with its greater antioxidative defense capacity.  相似文献   

7.
小麦芽期和苗期耐盐性综合评价   总被引:3,自引:0,他引:3  
土壤盐渍化严重影响小麦生产,提高小麦耐盐性是应对土壤盐渍化的主要途径之一,耐盐种质资源是耐盐性遗传改良的材料基础。本研究以小麦为材料,筛选芽期和苗期耐盐性鉴定评价的适宜Na Cl浓度,明确了小麦芽期耐盐性鉴定的最适Na Cl溶液浓度为1.2%,苗期耐盐性鉴定的最适土壤Na Cl浓度为0.8%。用该盐浓度胁迫处理321份小麦材料,获得芽期高耐盐材料21份,占供试材料的6.5%;苗期高耐盐材料18份,占供试材料的5.6%;芽期和苗期均为高耐盐的材料2份,分别是中作60115和冀麦一号。  相似文献   

8.
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89–96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33–53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.  相似文献   

9.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

10.
The present investigation evaluated the ability of an antioxidative defense system in terms of the tolerance against salinity-induced oxidative stress and also explored a possible relationship between the status of the components of an antioxidative defense system and the salt tolerance in Indica rice (Oryza sativa L.) genotypes. When the seedlings of a salt-sensitive cultivar was grown in sand cultures containing different NaCl concentrations (7 and 14 dS m?1) for 5–20 days, a substantial increase was observed in the rate of superoxide anion (O 2 ·? ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) which indicated an enhancement in lipid peroxidation. A declination in the level of thiol clearly indicated an increase in the protein oxidation as well as a decline in the reduced forms of ascorbate (AsA) and glutathione (GSH) and the ratios of their reduced to oxidized forms occurred in the salt-sensitive seedlings. Similar treatment caused a very little alteration or no change in the levels of these components in the seedlings of salt-tolerant cultivar. The activity of antioxidative enzymes superoxide dismutase (SOD), its isoform Cu/Zn-SOD and ascorbate peroxidase (APX) increased in both the cultivars against salinity. In salt-sensitive seedlings, the activity of the various enzymes, guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) increased at moderate salinity treatment of 7 dS m?1 NaCl while the activities of these enzymes declined with higher salinity level of 14 dS m?1 NaCl. However, a consistent increase was observed in the activities of these enzymes of salt-tolerant seedlings with an increase in the duration and the level of the salinity treatment. The results suggest that a higher status of antioxidants (AsA and GSH) and a coordinated higher activity of the enzymes (SOD, CAT, GPX, APX, and GR) can serve as the major determinants in the model for depicting salt tolerance in Indica rice seedlings.  相似文献   

11.
12.
This study was aimed to investigate the effect of inoculation on three salt-tolerant, plant-growth-promoting rhizobacteria (PGPR) STR2 (Bacillus pumilus), STR8 (Halomonas desiderata) and STR36 (Exiguobacterium oxidotolerans), for their growth-promoting potential and efficacy in augmenting salt tolerance in Mentha arvensis, an essential oil-bearing crop and natural source of l-menthol, under varying levels of NaCl stress (0, 100, 300 and 500 mM) imposed through irrigating water. Increase in the levels of salt concentration led to a decrease in the growth, fresh weight, leaf–stem ratio, oil content and yield. However, the negative effects of salinity were observed to be convalesced in the PGPR inoculated plants. At salinity levels of 100 and 300 mM NaCl, H. desiderata inoculated plants recorded the highest herb yield, whereas at 500 mM NaCl, the plants inoculated with E. oxidotolerans yielded maximum herb. The oil content in non-inoculated, salt-stressed plants was observed to be 0.46, 0.42 and 0.35 % at 100, 300 and 500 mM NaCl, respectively, whereas the plants inoculated with H. desiderata recorded the oil content of 0.71 and 0.60 and 0.48 % at similar levels of NaCl stress, respectively. The halotolerant PGPR minimized the deleterious effects of salt toxicity producing at par or higher yields at lower and medium salinity levels (100, 300 mM NaCl) than the un-inoculated non-salt-stressed plants through improved foliar nutrient uptake and enhanced antioxidant machinery. Based on the results of the experiments reported herein, the use of salt-tolerant, plant-growth-promoting bacteria may provide an effective means of facilitating M. arvensis growth in salt-stressed environments.  相似文献   

13.
盐胁迫对石蒜叶片形态结构和生理指标的影响   总被引:1,自引:0,他引:1  
以石蒜为试材,测定了0.1、0.5、1.0mol/L NaCl胁迫下叶片的超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性,可溶性蛋白、不溶性蛋白以及脯氨酸、丙二醛含量等生理指标的动态变化。用石蜡切片法对不同浓度NaCl胁迫后的叶片结构特征作比较,进行其抗盐性分析。结果表明:随NaCl浓度增加,对石蒜形态结构的影响表现在其叶片长度的变化及叶细胞的受损程度等方面;随NaCl浓度的增加和处理时间的延长,SOD和POD活性,不溶性蛋白、脯氨酸含量均呈先升后降趋势;可溶性蛋白呈先降后升趋势;丙二醛含量呈整体上升趋势。石蒜叶片各生理指标的变化通常在NaCl处理后的第7周和第8周为转折点。石蒜对低浓度的NaCl胁迫具有一定的耐受性。  相似文献   

14.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

15.
Fifteen genotypes of sweet potato were evaluated for salinity stress tolerance under in vitro NaCl mediated salinity stress conditions (MS, MS + 0.5% and MS + 1.0% NaCl). The growth parameters such as number of leaves, number of shoots, number of roots, length of plantlets and length of roots decreased significantly among the genotypes with increase in level of salinity. Of the 15 genotypes tested, six genotypes (108X1, 90/606, 90/696, CIP 8, S-30X15 and SP-61) were unable to sprout even at 0.5% NaCl and were characterized as susceptible to salt stress, three genotypes (CIP 6, 90/774 and CIP 3) which could tolerate 0.5% NaCl as moderately tolerant and six genotypes (CIP 12, CIP 13, JO 14, JP 13, SB-198/115 and Gouri) as tolerant to salinity at 1.0% NaCl. Amongst the six genotypes showing tolerance to 1.0% NaCl, the exotic genotypes––JP 13, CIP 12 and indigenous one SB-198/115 continued to exhibit significant higher values for growth parameters over the susceptible one. Based on the performance under NaCl mediated salinity stress (1.0%), the pattern of salinity tolerance in the genotypes through shoot apex culture was JP 13 > SB-198/115 > JO 14 > Gouri > CIP 12 > CIP 13. The effect of salt stress on the activity of antioxidative enzymes was studied in leaves of 8-week-old plantlets of those six genotypes, which responded at higher NaCl stress along with a susceptible genotype 90/606. In leaves of salt stressed plants, superoxide dismutase (SOD), guaiacol peroxidase (GPX) and catalase (CAT) activities increased when compared with the stress free control. The increase was more pronounced in the tolerant genotypes than that in the susceptible one. These results indicate that oxidative stress may play an important role in salt stressed sweet potato plants and that the greater protection of tolerant plants from salt induced oxidative damage results, at least in part, through the increase in the activity of antioxidant enzymes.  相似文献   

16.
The exact mechanism of helicase-mediated salinity tolerance is not yet understood. We have isolated a DESD-box containing cDNA from Pisum sativum (Pea) and named it as PDH45. It is a unique member of DEAD-box helicase family; containing DESD instead of DEAD/H. PDH45 overexpression driven by constitutive cauliflower mosaic virus-35S promoter in rice transgenic [Oryza sativa L. cv. Pusa Basmati 1 (PB1)] plants confers salinity tolerance by improving the photosynthesis and antioxidant machinery. The Na+ ion concentration and oxidative stress parameters in leaves of the NaCl (0, 100 or 200 mM) treated PDH45 overexpressing T1 transgenic lines were lower as compared to wild type (WT) rice plants under similar conditions. The 200 mM NaCl significantly reduced the leaf area, plant dry mass, net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci), chlorophyll (Chl) content in WT plants as compared to the transgenics. The T1 transgenics exhibited higher glutathione (GSH) and ascorbate (AsA) contents under salinity stress. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were significantly higher in transgenics; suggesting the existence of an efficient antioxidant defence system to cope with salinity induced-oxidative damage. Yeast two-hybrid assay indicated that the PDH45 protein interacts with Cu/Zn SOD, adenosine-5′-phosphosulfate-kinase, cysteine proteinase and eIF(4G), thus confirming the involvement of ROS scavenging machinery in the transgenic plants to provide salt tolerance. Furthermore, the T2 transgenics were also able to grow, flower, and set viable seeds under continuous salinity stress of 200 mM NaCl. This study provides insights into the mechanism of PDH45 mediated salinity stress tolerance by controlling the generation of stress induced reactive oxygen species (ROS) and also by protecting the photosynthetic machinery through a strengthened antioxidant system.  相似文献   

17.
Present study characterizes the anti-oxidative defense potential of four Brassica juncea varieties, Pusa Jaikisan, Varuna, RLM-198, and CS-52, differing in their ability to withstand salinity stress. 7-day-old seedlings raised in MS medium supplemented with 0, 50, 100, and 150 mM NaCl were used to monitor changes in the growth profile, level of stress marker molecules, and activities of important antioxidant enzymes. Increasing NaCl concentration resulted in a significant (P ≤ 0.05) reduction of shoot fresh and dry mass and vigor index in all the varieties tested. Maximum reduction in growth was recorded for RLM-198 while CS-52 maintained better growth characteristics. Varuna and RLM-198 exhibited a limited increase in superoxide dismutase, ascorbate peroxidase, and total peroxidase activity under increasing salinity. These varieties also recorded maximum salt stress-induced damage in terms of increased lipid peroxidation, H2O2 content, and electrolyte leakage. On the other hand, CS-52 recorded maximum proline accumulation with minimum levels of H2O2, electrolyte leakage, and malondialdehyde contents. With increasing salinity stress, CS-52 recorded maximal increase in the activity of antioxidant enzymes. However, catalase activity did not correlate with alterations in H2O2 levels under stress. Interestingly, a lower superoxide dismutase:ascorbate peroxidase ratio in CS-52 correlated with stress tolerance trait, while a comparatively higher superoxide dismutase:ascorbate peroxidase ratio in RLM-198 marked the susceptible nature of the variety. Our results propose that superoxide dismutase:ascorbate peroxidase ratio is the critical factor, determining the degree of stress tolerance in Brassica juncea.  相似文献   

18.
The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography‐mass spectrometry (GC‐MS)‐based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long‐term lethal salinity and was more efficient at excluding Cl from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre‐adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non‐extremophile legumes, and challenges the generalization of the metabolic salt pre‐adaptation hypothesis.  相似文献   

19.
20.
One-month old calli of two indica rice genotypes, i.e., Basmati-370 and Basmati-Kashmir were subjected to two iso-osmotic concentrations (−0.57 MPa and −0.74 MPa) created with 50 and 100 mol m−3 NaCl or 10 and 18% solutions of PEG-8000. Both genotypes tolerated only low levels of stress and showed severe growth suppression at −0.74 MPa. The degree of stress tolerance of both genotypes was greater for PEG induced stress than for NaCl induced stress. The relative growth rate of callus was reduced under both stresses, however, the reverse was true for callus dry weight. Sodium (Na+) content of the callus tissue was increased only under NaCl induced stress. Salt induced stress reduced K+ and Ca2+ contents, but the PEG induced stress increased them. Higher levels of stress increased the proline content many folds with more increase being under PEG stress than that under NaCl. Water and osmotic potentials of the callus tissue decreased, whereas turgor potential increased under both abiotic stresses. Overall, Basmati-370 was more tolerant to both NaCl and PEG induced stresses than Basmati-Kashmir, because of less reduction in growth and more dry weight. Moreover, Basmati-370 accumulated higher amounts of cations, free proline, and maintained maximum turgor as compared to Basmati-Kashmir. In conclusion, at cellular level, mechanism of NaCl induced osmotic stress tolerance was found to be associated with more ionic accumulation of inorganic solutes and that of PEG induced osmotic stress tolerance with the accumulation of free proline, as an important osmolyte in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号