首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   

2.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

3.
Aimed at achieving ideal morphology, illuminating morphology–performance relationship, and further improving the power conversion efficiency (PCE) of ternary polymer solar cells (TSCs), a ternary system is designed based on PTB7‐Th:PffBT4T‐2OD:PC71BM in this work. The PffBT4T‐2OD owns large absorption cross section, proper energy levels, and good crystallinity, which enhances exciton generation, charge dissociation and transport and suppresses charge recombination, thus remarkably increasing the short‐circuit current density (J sc) and fill factor (FF). Finally, a notable PCE of 10.72% is obtained for the TSCs with 15% weight ratio of PffBT4T‐2OD. As for the working mechanism, it confirmed the energy transfer from PffBT4T‐2OD to PTB7‐Th, which contributes to the improved exciton generation. And morphology characterization indicates that the devices with 15% PffBT4T‐2OD possess both appropriate domain size (25 nm) and enhanced domain purity. Under this condition, it affords numerous D/A interface for exciton dissociation and good bicontinuous nanostructure for charge transport simultaneously. As a result, the device with 15% PffBT4T‐2OD exhibits improved exciton generation, enhanced charge dissociation possibility, elevated hole mobility and inhibited charge recombination, leading to elevated J sc (19.02 mA cm?2) and FF (72.62%) simultaneously. This work indicates that morphology optimization as well as energy transfer plays a significant role in improving TSC performance.  相似文献   

4.
Poly‐dimethylsiloxane (PDMS) films with 2D periodic inverted moth‐eye nanopatterns on one surface are implemented as antireflection (AR) layers on a glass substrate for efficient light capture in encapsulated organic solar cells (OSCs). The inverted moth‐eye nanopatterned PDMS (IMN PDMS) films are fabricated by a soft imprint lithographic method using conical subwavelength grating patterns formed by laser interference lithography/dry etching. Their optical characteristics, together with theoretical analysis using rigorous coupled‐wave analysis simulation, and wetting behaviors are investigated. For a period of 380 nm, IMN PDMS films laminated on glass substrates exhibit a hydrophobic surface with a water contact angle (θCA) of ≈120° and solar weighted transmittance (SWT) of ≈94.2%, both significantly higher than those (θCA≈ 36° and SWT ≈ 90.3%) of bare glass substrates. By employing IMN PDMS films with a period of 380 nm on glass substrates for OSCs, an enhanced power conversion efficiency (PCE) of 6.19% is obtained mainly due to the increased short‐circuit current density (Jsc) of 19.74 mA cm‐2 compared to the OSCs with the bare glass substrates (PCE = 5.16% and Jsc = 17.25 mA cm‐2). For the OSCs, the device stability is also studied.  相似文献   

5.
The power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) have already exceeded 17%. However, the limited absorption range of an all-polymer system results in significantly reduced short-circuit current density (Jsc), which eventually influences the PCE improvement. To broaden the light absorption of polymer acceptors, herein, benzotriazole is introduced in the core unit of small molecule acceptors and thus two narrow-bandgap polymer acceptors named PTz-BO and PTz-C11 featuring the same molecular backbone and different side-chain length are synthesized. Compared with PTz-C11, the PTz-BO based-all PSCs deliver a slightly reduced Jsc, a large open-circuit voltage (Voc) and a low voltage loss below 0.50 V. Moreover, ternary all-PSCs are constructed by introducing PTz-C11 as a guest component. Benefiting from the reduced recombination, improved exciton generation and dissociation, and balanced charge transport, a high efficiency of 16.58% is obtained for the ternary all-PSCs, with a high Jsc over 25 mA cm−2 without sacrificing the Voc. Such result represents the highest efficiency reported for benzotriazole-based all-PSCs in the literature thus far. This work demonstrates the great potential of benzotriazole for the synthesis of efficient narrow-bandgap polymer acceptors.  相似文献   

6.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   

7.
Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short‐circuit currents (JSC) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open‐circuit voltages (VOC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl‐C61‐butyric acid methyl ester (PC61BM), that achieves a high VOC (0.9 V) with very low energy losses (Eloss = 0.52 eV) from the energy of absorbed photons, a respectable JSC (13 mA cm?2), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field‐dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge‐carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the JSC, VOC, and FF can all be improved, even with very low energetic offsets.  相似文献   

8.
Three new thieno[3,2‐b][1]benzothiophene ( TBT )‐based donor–π–acceptor (D–π–A) sensitizers, coded as SGT ‐ 121 , SGT ‐ 129 , and SGT ‐ 130 , have been designed and synthesized for dye‐sensitized solar cells (DSSCs), for the first time. The TBT , prepared by fusing thiophene unit with the phenyl unit of triphenylamine donor, is utilized as the π‐bridge for all sensitizers with good planarity. They have been molecularly engineered to regulate the highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy levels and extend absorption range as well as to control the electron‐transfer process that can ensure efficient dye regeneration and prevent undesired electron recombination. The photovoltaic performance of SGT‐sensitizer‐based DSSCs employing Co(bpy)32+/3+ (bpy = 2,2′‐bipyridine) redox couple is systematically evaluated in a thorough comparison with Y123 as a reference sensitizer. Among them, SGT ‐ 130 with benzothiadiazole‐phenyl ( BTD ‐ P ) unit as an auxiliary acceptor exhibits the highest power‐conversion efficiency (PCE) of 10.47% with Jsc = 16.77 mA cm?2, Voc = 851 mV, and FF = 73.34%, whose PCE is much higher than that of Y123 (9.5%). It is demonstrated that the molecular combination of each fragment in D–π–A organic sensitizers can be a pivotal factor for achieving the higher PCEs and an innovative strategy for strengthening the drawbacks of the π‐bridge.  相似文献   

9.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

10.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   

11.
A power conversion efficiency (PCE) of 16.2% is achieved in PM6:BTP‐4F‐12 based organic photovoltaics (OPVs). On the basis of efficient binary OPVs, a series of ternary OPVs are constructed by incorporating MeIC as the third component. The open circuit voltages (VOCs) of ternary OPVs can be gradually increased along with the incorporation of MeIC, suggesting the formation of an alloy state between BTP‐4F‐12 and MeIC with good compatibility. The energy loss (Eloss) of ternary OPVs can be decreased compared with that of two binary OPVs, contributing to the VOC improvement of ternary OPVs. The short circuit current density (JSC) and fill factor (FF) of ternary OPVs can also be simultaneously enhanced with MeIC content up to 10 wt% in acceptors, leading to 17.4% PCE of the optimized ternary OPVs. The JSC and FF improvement of ternary OPVs is thought to result from the optimized ternary active layers with more efficient photon harvesting, exciton dissociation and charge transport. The 17.4% PCE and 79.2% FF is among the top values of ternary OPVs. This work indicates that a ternary strategy is an emerging method to simultaneously minimize Eloss and optimize photon harvesting as well as improve the morphology of active layers for realizing performance improvement for OPVs.  相似文献   

12.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

13.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   

14.
A series of alkyl, alkoxyl, and alkylthio substituted A–π–D–π–A type nonfullerene acceptors (NFAs) IDTCN‐C , IDTCN‐O, and IDTCN‐S are designed and synthesized. The introduction of a lateral side chain at the outer position of the π bridge unit can endow the terminal moiety with a confined planar conformation due to the steric hindrance. Thus, compared with nonsubstituted NFA ( IDTT2F ), these acceptors tend to form favorable face‐on orientation and exhibit strong crystallinity as verified with grazing‐incidence wide‐angle X‐ray scattering measurement. Moreover, the variation of side chain can significantly change the lowest unoccupied molecular orbital (LUMO) energy level of acceptors. As state‐of‐the‐art NFAs, a power conversion efficiency of 13.28% (Voc = 0.91 V, Jsc = 19.96 mA cm?2, and FF = 73.2%) is obtained for the as‐cast devices based on IDTCN‐O , which is among the highest value reported in literature. The excellent photovoltaic performance for IDTCN‐O can be attributed to its slightly up‐shifted LUMO level and more balanced charge transport. This research demonstrates side chain engineering is an effective way to achieve high efficiency organic solar cells.  相似文献   

15.
The elongation of π‐conjugated bridges between the donor (D) and the acceptor (A) represents a feasible strategy towards enhancement of light‐harvesting in both breadth and depth of organic D‐π‐A dyes suitable for nanocrystalline TiO2‐based dye‐sensitized solar cells (DSSCs). Here, a series of organic dyes with elongating conjugated bridges is synthesized and characterized. DSSC devices employing a cobalt (II/III) redox electrolyte are fabricated using these dyes as light‐harvesting sensitizers. Compared to a dye with the 3,4‐ethylenedioxythiophene (EDOT) linker ( G188 ), the three counterparts with further extended π‐bridges present gradually red‐shifted electronic absorption spectra and a persistent decrease in oxidation potential. The photocurrent action spectra show that the extension of π‐conjugated bridges decreases the open‐circuit photovoltage. The best performance is shown in G268 with a short‐circuit photocurrent density (Jsc) of 16.27 mA cm2, an open‐circuit photovoltage (Voc) of 0.83 V, and a fill factor (FF) of 0.67, corresponding to an overall conversion efficiency of 9.24%. Unexpectedly, G270, which has with the longest π‐bridge , showed the lowest Jsc, Voc, and efficiency.  相似文献   

16.
A tandem organic solar cell (OSC) is a valid structure to widen the photon response range and suppress the transmission loss and thermalization loss. In the past few years, the development of low‐bandgap materials with broad absorption in long‐wavelength region for back subcells has attracted considerable attention. However, wide‐bandgap materials for front cells that have both high short‐circuit current density (JSC) and open‐circuit voltage (VOC) are scarce. In this work, a new fluorine‐substituted wide‐bandgap small molecule nonfullerene acceptor TfIF‐4FIC is reported, which has an optical bandgap of 1.61 eV. When PBDB‐T‐2F is selected as the donor, the device offers an extremely high VOC of 0.98 V, a high JSC of 17.6 mA cm?2, and a power conversion efficiency of 13.1%. This is the best performing acceptor with such a wide bandgap. More importantly, the energy loss in this combination is 0.63 eV. These properties ensure that PBDB‐T‐2F:TfIF‐4FIC is an ideal candidate for the fabrication of tandem OSCs. When PBDB‐T‐2F:TfIF‐4FIC and PTB7‐Th:PCDTBT:IEICO‐4F are used as the front cell and the back cell to construct tandem solar cells, a PCE of 15% is obtained, which is one of best results reported to date in the field of organic solar cells.  相似文献   

17.
Morphology control is one of the key strategies in optimizing the performance of organic photovoltaic materials, particularly for diketopyrrolopyrrole (DPP)‐based donor polymers. The design of DPP‐based polymers that provide high power conversion efficiency (PCE) presents a significant challenge that requires optimization of both energetics and morphology. Herein, a series of high performance, small band gap DPP‐based terpolymers are designed via two‐step side chain engineering, namely introducing alternating short and long alkyls for reducing the domain spacing and inserting alkylthio for modulating the energy levels. The new DPP‐based terpolymers are compared to delineate how the side chain impacts the mesoscale morphology. By employing the alkylthio‐substituted terpolymer PBDPP‐TS, the new polymer solar cell (PSC) device realizes a good balance of a high V oc of 0.77 V and a high J sc over 15 mA cm?2, and thus realizes desirable PCE in excess of 8% and 9.5% in single junction and tandem PSC devices, respectively. The study indicates better control of domain purity will greatly improve performance of single junction DPP‐based PSCs toward 10% efficiency. More significantly, the utility of this stepwise side chain engineering can be readily expanded to other classes of well‐defined copolymers and triggers efficiency breakthroughs in novel terpolymers for photovoltaic and related electronic applications.  相似文献   

18.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

19.
The achievement of effective alkaline hydrogen production from water electrolysis is an active field of research. Herein, an integrated electrode composed of crystalline Ni(OH)2 and amorphous NiMoOx is fabricated onto nickel foam (denoted as Ni(OH)2–NiMoOx/NF). The hydrogen evolution reaction (HER) kinetics are optimized along with phase transformation process during soaking operation. An overpotential of 36 mV to drive 10 mA cm?2 along with the low Tafel slope of 38 mV dec?1 reveals the catalyst's excellent HER performance and a Heyrovsky‐step‐controlled HER mechanism. When assembled into a urea‐assisted water electrolyzer, a voltage of 1.42 V can reach 10 mA cm?2. Further experiments and Fourier transform infrared spectroscopy (FTIR) results illustrate the synergy effect between crystalline and amorphous areas and the optimized water dissociation step. Crystalline Ni(OH)2 serves as the scissor for water dissociation in an alkali environment to produce H*, while the amorphous NiMoOx layer serves as the location for H* adsorption and H2 desorption.  相似文献   

20.
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号