首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct photo‐electrochemical (PEC) water splitting is of great practical interest for developing a sustainable energy systems, but remains a big challenge owing to sluggish charge separation, low efficiency, and poor stability. Herein, a 3D porous In2O3/In2S3 pyramid heterostructure array on a fluorine‐doped tin oxide substrate is fabricated by an ion exchange–induced synthesis strategy. Based on the synergistic structural and electronic modulations from density functional theory calculations and experimental observations, 3D porous In2O3/In2S3 photoanode by the protective layer delivers a low onset potential of ≈0.02 V versus reversible hydrogen electrode (RHE), the highest photocurrent density of 8.2 mA cm?2 at 1.23 V versus RHE among all the In2S3 photoanodes reported to date, an incident photon‐to‐current efficiency of 76% at 400 nm, and high stability over 20 h for PEC water splitting are reported. This work provides an alternative promising prototype for the design and construction of novel heterostructures in robust PEC water splitting applications.  相似文献   

2.
Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.  相似文献   

3.
The photo‐electrochemical performance of the Si photocathode is seriously restricted by the severe charge recombination at the Si/electrolyte interface and sluggish hydrogen evolution reaction (HER) kinetics. Herein, a facile hydrothermal process is reported to integrate Ni/Fe codoped In2S3 nanosheet arrays onto the surface of unmodified a p‐Si photocathode for water reduction. The experimental results and density functional theory calculations indicate that the Ni and Fe codoping of In2S3 contributes to small surface transfer impedance, prolonged carrier lifetime, increased charge carrier concentration, and reduced overpotential for HER. Moreover, a p–n junction formed at the interface of Si and Ni/Fe:In2S3 promotes the photogenerated electron–hole separation and reduces the recombination in the bulk. As a result, the Si–Ni/Fe:In2S3 photocathode exhibits high performance with significantly enhanced photocurrent of ?80.9 mA cm?2 at ?1.3 VRHE and positive onset potential of 0.44 VRHE.  相似文献   

4.
This study introduces zeolitic imidazolate framework‐8 (ZIF‐8) as the first metal‐organic framework based transparent surface passivation layer for photo‐electrochemical (PEC) water splitting. A significant enhancement for PEC water oxidation is demonstrated based on the in situ seamless coating of ZIF‐8 surface passivation layer on Ni foam (NF) supported ZnO nanorod arrays photoanode. The PEC performance is improved by optimizing the ZIF‐8 thickness and by grafting Ni(OH)2 nanosheets as synergetic co‐catalyst. With respect to ZnO/NF, the optimized Ni(OH)2/ZIF‐8/ZnO/NF photoanode exhibits a two times larger photocurrent density of 1.95 mA cm?2 and also a two times larger incident photon to current conversion efficiency of 40.05% (350 nm) at 1.23 V versus RHE (VRHE) under AM 1.5 G. The synergetic surface passivation and the co‐catalyst modification contribute to prolonging the charge lifetime, to promoting the charge transfer, and to decreasing the overpotential for water oxidation.  相似文献   

5.
Regulation of Bio‐systems in a clean, simple, and efficient way is important for the design of smart bio‐interfaces and bioelectronic devices. Light as a non‐invasive mean to control the activity of a protein enables spatial and temporal control far superior to other chemical and physical methods. The ability to regulate the activity of a catalytic enzyme in a biofuel‐cell reduces the waste of resources and energy and turns the fuel‐cell into a smart and more efficient device for power generation. Here we present a microbial‐fuel‐cell based on a surface displayed, photo‐switchable alcohol dehydrogenase. The enzyme was modified near the active site using non‐canonical amino acids and a small photo‐reactive molecule, which enables reversible control of enzymatic activity. Depending on the modification site, the enzyme exhibits reversible behavior upon irradiation with UV and visible light, in both biochemical, and electrochemical assays. The change observed in power output of a microbial fuel cell utilizing the modified enzyme was almost five‐fold, between inactive and active states.  相似文献   

6.
A significant methodology gap remains in the construction of advanced electrocatalysts, which has collaborative defective functionalities and structural coherence that maximizes electrochemical redox activity, electrical conductivity, and mass transport characteristics. Here, a coordinative self‐templated pseudomorphic transformation of an interpenetrated metal organic compound network is conceptualized into a defect‐rich porous framework that delivers highly reactive and durable photo(electro)chemical energy conversion functionalities. The coordinative‐template approach enables previously inaccessible synthesis routes to rationally accomplish an interconnected porous conductive network at the microscopic level, while exposing copious unsaturated reactive sites at the atomic level without electronic or structural integrity trade‐offs. Consequently, porous framework, interconnected motifs, and engineered defects endow remarkable electrocatalytic hydrogen evolution reaction and oxygen evolution reaction activity due to intrinsically improved turnover frequency, electrochemical surface area, and charge transfer. Moreover, when the hybrid is coupled with a silicon photocathode for solar‐driven water splitting, it enables photon assisted redox reactions, improved charge separation, and enhanced carrier transport via the built‐in heterojunction and additive co‐catalyst functionality, leading to a promising photo(electro)chemical hydrogen generation performance. This work signifies a viable and generic approach to prepare other functional interconnected metal organic coordinated compounds, which can be exploited for diverse energy storage, conversion, or environmental applications.  相似文献   

7.
Black TiO2 has demonstrated a great potential for a variety of renewable energy technologies. However, its practical application is heavily hindered due to lack of efficient hydrogenation methods and a deeper understanding of hydrogenation mechanisms. Here, a simple and straightforward hot wire annealing (HWA) method is presented to prepare black TiO2 (H–TiO2) nanorods with enhanced photo‐electrochemical (PEC) activity by means of atomic hydrogen [H]. Compared to conventional molecular hydrogen approaches, the HWA shows remarkable effectiveness without any detrimental side effects on the device structure, and simultaneously the photocurrent density of H–TiO2 reaches 2.5 mA cm?2 (at 1.23 V vs reversible hydrogen electrode (RHE)). Due to the controllable and reproducible [H] flux, the HWA can be developed as a standard hydrogenation method for black TiO2. Meanwhile, the relationships between the wire temperatures, structural, optical, and photo‐electrochemical properties are systematically investigated to verify the improved PEC activity. Furthermore, the density functional theory (DFT) study provides a comprehensive insight not only into the highly efficient mechanism of the HWA approach but also its favorably low‐energy‐barrier hydrogenation pathway. The findings will have a profound impact on the broad energy applications of H–TiO2 and contribute to the fundamental understanding of its hydrogenation.  相似文献   

8.
The global energy demand is increasing at the same time as fossil fuel resources are dwindling. Consequently, the search for alternative energy sources is a major topic worldwide. Solar energy is one of the most promising, effective and emission‐free energy sources. However, the energy has to be stored to compensate the fluctuating availability of the sun and the actual energy demand. Photo‐rechargeable electric energy storage systems may solve this problem by immediately storing the generated electricity. Different combinations of solar cells and storage devices are possible. High efficiencies can be achieved by the combination of dye‐sensitized solar cells (DSSC) and capacitors. However, other hybrid devices including DSSCs or organic photovoltaic systems and redox flow batteries, lithium ion batteries and metal air batteries are playing an increasing role in this research field. This Progress Report reviews the state of the art research of photo‐rechargeable batteries based on organic solar cells, as well as storage modules.  相似文献   

9.
The photomechanical effect was found for the first time in a polymer composition on the basis of polymethylmethacrylate with embedded molecules of the luminophor dibenzoylmethanate of boron difluoride incapable of undergoing photochemical isomerization, unlike other compounds. A thermal mechanism of photochemical displacement was suggested. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This work presents a novel photo‐electrochemical architecture based on the 3D pyramid‐like graphene/p‐Si Schottky junctions. Overcoming the conventional transfer technique by which only planar graphene/Si Schottky junctions are currently available, this work demonstrates the 3D pyramid‐like graphene/p‐Si Schottky junction photocathode, which greatly enhances light harvesting efficiency and exhibits promising photo‐electrochemical performance for hydrogen generation. The formation of 3D pyramid‐like graphene/p‐Si Schottky junctions exhibits enhanced electrochemical activity and promotes charge separation efficiency compared with the bare pyramid Si surface without graphene. The inherent chemical inertness of graphene significantly improves the operational stability of 3D graphene/p‐Si Schottky junction photo‐electrochemical cells. The 3D pyramid‐like graphene/p‐Si Schottky junction photocathode delivers an onset potential of 0.41 V and a saturated photocurrent density of ?32.5 mA cm?2 at 0 V (vs RHE) with excellent stability comparable to values reported for textured or nanostructured p‐Si photocathodes coated with ultrathin oxide layers by the conventional atomic layer deposition technique. These results suggest that the formation of graphene/Si Schottky junctions with a 3D architecture is a promising approach to improve the performance and durability of Si‐based photo‐electrochemical systems for water splitting or solar‐to‐fuel conversion.  相似文献   

11.
12.
Understanding the degradation mechanisms of photoelectrodes and improving their stability are essential for fully realizing solar‐to‐hydrogen conversion via photo‐electrochemical (PEC) devices. Although amorphous TiO2 layers have been widely employed as a protective layer on top of p‐type semiconductors to implement durable photocathodes, gradual photocurrent degradation is still unavoidable. This study elucidates the photocurrent degradation mechanisms of TiO2‐protected Sb2Se3 photocathodes and proposes a novel interface‐modification methodology in which fullerene (C60) is introduced as a photoelectron transfer promoter for significantly enhancing long‐term stability. It is demonstrated that the accumulation of photogenerated electrons at the surface of the TiO2 layer induces the reductive dissolution of TiO2, accompanied by photocurrent degradation. In addition, the insertion of the C60 photoelectron transfer promoter at the Pt/TiO2 interface facilitates the rapid transfer of photogenerated electrons out of the TiO2 layer, thereby yielding enhanced stability. The Pt/C60/TiO2/Sb2Se3 device exhibits a high photocurrent density of 17 mA cm?2 and outstanding stability over 10 h of operation, representing the best PEC performance and long‐term stability compared with previously reported Sb2Se3‐based photocathodes. This research not only provides in‐depth understanding of the degradation mechanisms of TiO2‐protected photocathodes, but also suggests a new direction to achieve durable photocathodes for photo‐electrochemical water splitting.  相似文献   

13.
Atomically thin 2D heterostructures have opened new realms in electronic and optoelectronic devices. Herein, 2D lateral heterostructures of mesoporous In2O3–x/In2S3 atomic layers are synthesized through the in situ oxidation of In2S3 atomic layers by an oxygen plasma‐induced strategy. Based on experimental observations and theoretical calculations, the prolonged charge carrier lifetime and increased electron density reveal the efficient photoexcited carrier transport and separation in the In2O3–x/In2S3 layers by interfacial bonding at the atomic level. As expected, the synergistic structural and electronic modulations of the In2O3–x/In2S3 layers generate a photocurrent of 1.28 mA cm?2 at 1.23 V versus a reversible hydrogen electrode, nearly 21 and 79 times higher than those of the In2S3 atomic layers and bulk counterpart, respectively. Due to the large surface area, abundant active sites, broadband‐light harvesting ability, and effective charge transport pathways, the In2O3–x/In2S3 layers build efficient pathways for photoexcited charge in the 2D semiconductive channels, expediting charge transport and kinetic processes and enhancing the robust broadband‐light photo‐electrochemical water splitting performance. This work paves new avenues for the exploration and design of atomically thin 2D lateral heterostructures toward robust photo‐electrochemical applications and solar energy utilization.  相似文献   

14.
The aims of this work were to (a) evaluate the susceptibility of endospores of Bacillus cereus, B. licheniformis, B. sphaericus and B. subtilis to photodynamic inactivation using a tricationic porphyrin as photosensitizer, (b) assess the efficiency of adsorption of the photosensitizer in endospore material as a determinant of the susceptibility of endospores of different Bacillus species to photo‐inactivation, (c) determine the value of B. cereus as a model organism for studies of antimicrobial photodynamic inactivation of bacterial endospores. The results of irradiation experiments with endospores of four species of Bacillus showed that B. cereus was the only species for which efficient endospore photo‐inactivation (> 3 log reduction) could be achieved. Endospores of B. licheniformis, B. sphaericus and B. subtilis were virtually resistant to photo‐inactivation with tricationic porphyrin. The amount of porphyrin bound to endospore material was not significantly different between species, regardless of the presence of an exosporium or exosporium‐like outer layer. The sensitivity of endospores to photodynamic inactivation with a tricationic porphyrin is highly variable among different species of the genus Bacillus. The presence of an exosporium in endospores of B. cereus and B. sphaericus, or an exosporium‐like glycoprotein layer in endospores of B. subtilis, did not affect the amount of bound photosensitizer and did not explain the inter‐species variability in susceptibility to photodynamic inactivation. The results imply that the use of B. cereus as a more amenable surrogate of the exosporium‐producing B. anthracis must be carefully considered when testing new photosensitizers for their antimicrobial photo‐inactivation properties.  相似文献   

15.
Flexible and biocompatible integrated photo‐charging devices consisting of photovoltaic cells and energy storage units can provide an independent power supply for next‐generation wearable electronics or biomedical devices. However, current flexible integrated devices exhibit low total energy conversion and storage efficiency and large device thickness, hindering their applicability towards efficient and stable self‐powered systems. Here, a highly efficient and ultra‐thin photo‐charging device with a total efficiency approaching 6% and a thickness below 50 µm is reported, prepared by integrating 3‐µm‐thick organic photovoltaics on 40 µm‐thick carbon nanotube/polymer‐based supercapacitors. This flexible photo‐charging capacitor delivers much higher performance compared with previous reports by tuning the electrochemical properties of the composite electrodes, which reduce the device thickness to 1/8 while improving the total efficiency by 15%. The devices also exhibit a superior operational stability (over 96% efficiency retention after 100 charge/discharge cycles for one week) and mechanical robustness (94.66% efficiency retention after 5000 times bending at a radius of around 2 mm), providing a high‐power and long‐term operational energy source for flexible and wearable electronics.  相似文献   

16.
Photo‐identification (photo‐ID) was tested as a means to identify individual small‐spotted catsharks Scyliorhinus canicula. The spotting pattern of the caudal region of S. canicula was used for the tests and revealed that photo‐ID is an efficient method to identify individuals. Photo‐ID is logistically simple, making it a potential alternative to traditional tagging to provide information on the distribution patterns and population dynamics of S. canicula and related species.  相似文献   

17.
He Chen  Ying Gao  Yingying Su  Yi Lv 《Luminescence》2008,23(5):287-291
In the present study, a simple and sensitive photo‐induced chemiluminescence (CL) method for the quantitation of reducing sugars, including fructose, glucose, sucrose and lactose, was developed. This method was based on the on‐line photocatalytic reaction of the reducing sugars, using a home‐made photoreactor consisting of PTEF tube helically coiling around a high‐pressure mercury UV lamp. Reducing sugars were detected by direct CL emission resulting from the reaction between the photoproducts and luminol. To maximize the signal intensity, the effects of irradiation time, flow rate, luminol concentration, buffer pH and concentration were tested. Under optimum conditions, the linear dynamic ranges were all 0.36–18 mg/L and the relative standard deviations (RSDs) were 1.8–2.3%, with limits of detection (3σ) of 0.06 mg/L for fructose, glucose, sucrose and lactose. Finally, interference effects from ascorbic acid, amino acids (alanine, glycine, serine, leucine and methionine) and some metal ions and anions were also investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Polymeric carbon nitride (CN) has emerged as a promising semiconductor for energy‐related applications. However, its utilization in photo‐electrochemical cells is still very limited owing to poor electron–hole separation efficiency, short electron diffusion length, and low absorption coefficient. Here the synthesis of a highly porous carbon nitride/reduced graphene oxide (CN‐rGO) film with good photo‐electrochemical properties is reported. The CN‐rGO film exhibits long electron diffusion length and high electrochemical active surface area, good charge separation, and enhanced light‐harvesting properties. The film displays a 20‐fold enhancement of photocurrent density over pristine CN, reaching up to 75 µA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) in an alkaline solution, as well as stability over a wide pH range. Photocurrent measurements with a hole scavenger reveal a photocurrent density of 660 µA cm?2 at 1.23 V versus RHE and a quantum efficiency of 60% at 400 nm, resulting in the production of 0.8 mol h?1 g?1 of hydrogen. The substantial photo‐electrochemical activity enhancement and hydrogen production together with the low price, high electrochemical surface area, long electron diffusion length, stability under harsh condition, and tunable photophysical properties of CN materials open many possibilities for their utilization in (photo)electrochemical and electronic devices.  相似文献   

19.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

20.
The solar‐rechargeable electric energy storage systems (SEESSs), which can simultaneously harvest and store solar energy, are considered a promising next‐generation renewable energy supply system. However, the difficulty in meeting the demands of higher overall photoelectric conversion and storage efficiency (PCSE) with both high power density and large energy density in the current SEESSs severely limit their practical application. Herein, a new class is demonstrated of portable and highly efficient SEESS that uniquely integrates a perovskite solar module (PSM) and an aluminum‐ion battery (AIB) directly on a bifunctional aluminum electrode without any external circuit. Such nanostructural design in the SEESS not only exhibits fast photo‐charge/discharge rate (less than one minute) with high power density (above 5000 W kg?1), but also delivers a high energy density (above 43 Wh kg?1). By rationally matching the maximum power point voltage of PSM with AIB charging voltage, an excellent solar‐charging efficiency of 15.2% and a high PCSE of 12.04% are achieved, which is among the best in all reported portable SEESSs. Moreover, enhanced PCSE is observed as the light intensity decreases, which makes such SEESS immune from the geographical location and climate limitations for diverse practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号