首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed cation perovskites currently achieve very promising efficiency and operational stability when used as the active semiconductor in thin‐film photovoltaic devices. However, an in‐depth understanding of the structural and photophysical properties that drive this enhanced performance is still lacking. Here the prototypical mixed‐cation mixed‐halide perovskite (FAPbI3)0.85(MAPbBr3)0.15 is explored, and temperature‐dependent X‐ray diffraction measurements that are correlated with steady state and time‐resolved photoluminescence data are presented. The measurements indicate that this material adopts a pseudocubic perovskite α phase at room temperature, with a transition to a pseudotetragonal β phase occurring at ≈260 K. It is found that the temperature dependence of the radiative recombination rates correlates with temperature‐dependent changes in the structural configuration, and observed phase transitions also mark changes in the gradient of the optical bandgap. The work illustrates that temperature‐dependent changes in the perovskite crystal structure alter the charge carrier recombination processes and photoluminescence properties within such hybrid organic–inorganic materials. The findings have significant implications for photovoltaic performance at different operating temperatures, as well as providing new insight on the effect of alloying cations and halides on the phase behavior of hybrid perovskite materials.  相似文献   

2.
Layer deposition of organometal halide perovskites for solar cells usually involves tedious experimentation to establish the optimum processing conditions. Important parameters are the time and temperature of thermal annealing. Here, it is demonstrated that in situ photoluminescence allows to determine the optimal annealing procedure without fabricating complete solar cells. A deposition method is used in which dense layers of perovskite crystals are formed within seconds in ambient air by hot casting a mixture of lead acetate, lead chloride, and methylammonium iodide. The as‐cast perovskite layers are highly luminescent because charge carriers are unable to reach the charge extraction layers that quench the photoluminescence. Thermal annealing enhances charge transport and quenches the photoluminescence, but deteriorates the photovoltaic performance via decomposition of the perovskite if applied for a too long time. It is demonstrated that the optimal annealing time coincides with the time required for the in situ measured photoluminescence intensity to reach its baseline value for annealing temperatures in the range of 80–100 °C. This results in efficient (>14%) perovskite solar cells and shows that in situ photoluminescence is a simple but powerful tool for in‐line quality monitoring of perovskite films.  相似文献   

3.
The meteoric rise of perovskite single‐junction solar cells has been accompanied by similar stunning developments in perovskite tandem solar cells. Debuting with efficiencies less than 14% in 2014, silicon–perovskite solar cells are now above 25% and will soon surpass record silicon single‐junction efficiencies. Unconstrained by the Shockley–Quiesser single‐junction limit, perovskite tandems suggest a real possibility of true third‐generation thin‐film photovoltaics; monolithic all‐perovskite tandems have reached 18% efficiency and will likely pass perovskite single‐junction efficiencies within the next 5 years. Inorganic–organic metal–halide perovskites are ideal candidates for inclusion in tandem solar cells due to their high radiative recombination efficiencies, excellent absorption, long‐range charge‐transport, and broad ability to tune the bandgap. In this progress report, the development of perovskite tandem cells is reviewed, with presentation of their key motivations and challenges. In detail, it presents an overview of recombination layer materials, bandgap‐tuneability, transparent contact architectures, and perovskite compounds for use in tandems. Theoretical estimates of efficiency for future tandem and triple‐junction perovskite cells are presented, outlining roadmaps for future focused research.  相似文献   

4.
Thermal degradation in perovskite solar cells is still an unsettled issue that limits its further development. In this study, 2‐(1H‐pyrazol‐1‐yl)pyridine is introduced into lead halide 3D perovskites, which allows 1D–3D hybrid perovskite materials to be obtained. The heterostructural 1D–3D perovskites are proved to be capable of remarkably prolonging the photoluminescence decay lifetime and suppressing charge carrier recombination in comparison to conventional 3D perovskites. The intrinsic properties of thermodynamically stable yet kinetically labile 1D materials allow the system to alleviate the lattice mismatch and passivate the interface traps of heterojunction region of 1D–3D hybrid perovskites that may occur during the crystal growth process. Importantly, the as‐fabricated 1D–3D perovskite solar cells display a thermodynamic self‐healing ability, which is induced through blocking the ion‐migration channels of A‐site ions by the flexible 1D perovskite with less densely close‐packed structure. Particularly, the power conversion efficiency of as‐fabricated unencapsulated 1D–3D perovskite solar cells is demonstrated to be reversible under temperature cycling (25–85 °C) at 55% relative humidity, which largely outperforms the pure 3D perovskite solar cell. The present study provides a facile approach to fabricate 1D–3D perovskite solar cells with high efficiency and long‐term stability.  相似文献   

5.
Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed‐halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge‐carriers in the perovskite, a charge‐neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge‐carriers can be extracted from the iodide‐rich low‐bandgap regions of the phase‐segregated perovskite formed under illumination, suggesting the existence of charge‐carrier percolation pathways through grain boundaries where phase‐segregation may occur.  相似文献   

6.
The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.  相似文献   

7.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

8.
Inorganic cesium lead halide perovskite solar cells (PSCs) have received enormous attention due to their excellent stability compared with that of their organic–inorganic counterparts. However, the lack of optimization strategies leads the inorganic PSCs to suffer from low efficiency arising from significant recombination. To overcome this dilemma, a surface modification of the electron transport layer (ETL)/perovskite interface is undertaken by using SmBr3 to improve the crystallization and morphology of the perovskite layer for enhanced ETL/perovskite interface interaction. Encouragingly, a gradient energy band is created at the interface with an outstanding hole blocking effect. As a result, both the charge recombination occurring at the interface and the nonradiative recombination inside the perovskite are suppressed, and, simultaneously, the charge extraction is improved successfully. Therefore, the power conversion efficiency of the CsPbIBr2 PSCs is increased to as high as 10.88% under one sun illumination, which is 30% higher than its counterparts without the modification. It is logically inferred that this valuable optimization strategy can be extended to other analogous structures and materials.  相似文献   

9.
The presence of non‐radiative recombination at the perovskite surface/interface limits the overall efficiency of perovskite solar cells (PSCs). Surface passivation has been demonstrated as an efficient strategy to suppress such recombination in Si cells. Here, 1‐naphthylmethylamine iodide (NMAI) is judiciously selected to passivate the surface of the perovskite film. In contrast to the popular phenylethylammonium iodide, NMAI post‐treatment primarily leaves NMAI salt on the surface of the perovskite film. The formed NMAI layer not only efficiently decreases the defect‐assisted recombination for chemical passivation, but also retards the charge accumulation of energy level mis‐alignment for vacuum level bending and prevents minority carrier recombination due to the charge‐blocking effect. Consequently, planar PSCs with high efficiency of 21.04% and improved long‐term stability (98.9% of the initial efficiency after 3240 h) are obtained. Moreover, open‐circuit voltage as high as 1.20 V is achieved at the absorption threshold of 1.61 eV, which is among the highest reported values in planar PSCs. This work provides new insights into the passivation mechanisms of organic ammonium salts and suggests future guidelines for developing improved passivation layers.  相似文献   

10.
Judicious choice of transport layer in organic–inorganic halide perovskite solar cells can be one of the essential parameters in photovoltaic design and fabrication techniques. This article reports the effect of optically generated dipoles in transport layer on the photovoltaic actions in active layer in perovskite solar cells with the architecture of indium tin oxide (ITO)/TiO x /CH3NH3PbI3–x Cl x /hole transport layer (HTL)/Au. Here, PTB7‐thieno[3,4‐b]thiophene‐alt‐benzodithiophene and P3HT‐poly(3‐hexylthiophene) are separately used as the HTL with significant and negligible photoinduced dipoles, respectively. Electric field‐induced photoluminescence quenching provides the first‐hand evidence to indicate that the photoinduced dipoles are partially aligned in the amorphous PTB7 layer under the influence of device built‐in field. By monitoring the recombination process through magneto‐photocurrent measurements under device operation condition, it is shown that the photoinduced dipoles in PTB7 layer can decrease the recombination of photogenerated carriers in the active layer in perovskite solar cells. Furthermore, the capacitance measurements suggest that the photoinduced dipoles in PTB7 can decrease charge accumulation at the electrode interface. Therefore, the studies indicate the important role of photoinduced dipoles in the HTL on charge recombination dynamics and provide a fundamental insight on how the polarization in transport layer can influence the device performance in perovskite solar cells.  相似文献   

11.
The presence of surface and grain boundary defects in organic–inorganic halide perovskite films can be detrimental to both the performance and operational stability of perovskite solar cells (PSCs). Here, the effect of chloride additives is studied on the bulk and surface defects of the mixed cation and halide PSCs. It is found that using an antisolvent technique, the perovskite film is divided into two layers, i.e., a bottom layer with large grains and a thin capping layer with small grains. The addition of formamidinium chloride (FACl) into the precursor solution removes the small‐grained perovskite capping layer and suppresses the formation of bulk and surface defects, providing a perovskite film with enhanced crystallinity and large grain size of over 1 µm. Time‐resolved photoluminescence measurements show longer lifetimes for perovskite films modified by FACl and subsequently passivated by 1‐adamantylamine hydrochloride as compared to the reference sample. Impedance spectroscopy measurements show that these treatments reduce the recombination in the PSCs, leading to a champion device with power conversion efficiency (PCE) of 21.2%, an open circuit voltage of 1152 mV and negligible hysteresis. The Cl treated PSC also shows improved operational stability with only 12% PCE loss after 700 h under continuous illumination.  相似文献   

12.
The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long‐term stability of devices. A detailed understanding of the ion migration‐driven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long‐term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias‐induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide‐rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.  相似文献   

13.
Rapid improvement in photoconversion efficiency (PCE) of solution processable organometallic hybrid halide based perovskite solar cells (PSCs) have taken the photovoltaic (PV) community with a surprise and has extended their application in other electronic devices such as light emitting diodes, photo detectors and batteries. Together with efforts to push the PCE of PSCs to record values >22% – now at par with that of crystalline silicon solar cells – origin of their PV action and underlying physical processes are also deeply investigated worldwide in diverse device configurations. A typical PSC consists of a perovskite film sandwiched between an electron and a hole selective contact thereby creating ESC/perovskite and perovskite/HSC interfaces, respectively. The selective contacts and their interfaces determine properties of perovskite layer and also control the performance, origin of PV action, open circuit voltage, device stability, and hysteresis in PSCs. Herein, we define ideal charge selective contacts, and provide an overview on how the choice of interfacing materials impacts charge accumulation, transport, transfer/recombination, band‐alignment, and electrical stability in PSCs. We then discuss device related considerations such as morphology of the selective contacts (planar or mesoporous), energetics and electrical properties (insulating and conducting), and its chemical properties (organic vs inorganic). Finally, the outlook highlights key challenges and future directions for a commercially viable perovskite based PV technology.  相似文献   

14.
Grains and grain boundaries play key roles in determining halide perovskite‐based optoelectronic device performance. Halide perovskite monocrystalline solids with large grains, smaller grain boundaries, and uniform surface morphology improve charge transfer and collection, suppress recombination loss, and thus are highly favorable for developing efficient solar cells. To date, strategies of synthesizing high‐quality thin monocrystals (TMCs) for solar cell applications are still limited. Here, by combining the antisolvent vapor‐assisted crystallization and space‐confinement strategies, high‐quality millimeter sized TMCs of methylammonium lead iodide (MAPbI3) perovskites with controlled thickness from tens of nanometers to several micrometers have been fabricated. The solar cells based on these MAPbI3 TMCs show power conversion efficiency (PCE) of 20.1% which is significantly improved compared to their polycrystalline counterparts (PCE) of 17.3%. The MAPbI3 TMCs show large grain size, uniform surface morphology, high hole mobility (up to 142 cm2 V?1 s?1), as well as low trap (defect) densities. These properties suggest that TMCs can effectively suppress the radiative and nonradiative recombination loss, thus provide a promising way for maximizing the efficiency of perovskite solar cells.  相似文献   

15.
Organic–inorganic halide perovskites are promising materials for next‐generation photovoltaic device due to their attractive photoelectrical properties such as strong light absorption, high carrier mobility, and tunable bandgap. Generally, perovskite solar cells require carrier transport layers (CTL) to provide a built‐in electric field and reduce the recombination rate. However, the construction of suitable electron‐ and hole‐transport layers is not cost effective, impairing the commercial application of the devices. An n–p perovskite homojunction absorber with a graded bandgap is developed by introducing a three‐step dynamic spin‐coating strategy and variable valence Sn elements. The bandgap of the perovskite absorber is gradually manipulated from 1.53 eV (the bottom) to 1.27 eV (the top). The electronic behavior is also transformed from n‐type (excess PbI2, the bottom) to p‐type (Sn vacancy, the top) in a very short distance (50 nm). This designed perovskite homojunction electronic structure not only expands the light harvesting range from 800 to 970 nm which provides potential to break the PCE limits, but also promotes oriented carrier transportation and weakens the dependence on CTL. The demonstrated asymmetrical active layer shows a brand‐new approach to simplify the device structure and boost the performance of CTL‐free perovskite solar cells.  相似文献   

16.
The production of highly efficient single‐ and multijunction metal halide perovskite (MHP) solar cells requires careful optimization of the optical and electrical properties of these devices. Here, precise control of CH3NH3PbI3 perovskite layers is demonstrated in solar cell devices through the use of dual source coevaporation. Light absorption and device performance are tracked for incorporated MHP films ranging from ≈67 nm to ≈1.4 µm thickness and transfer‐matrix optical modeling is utilized to quantify optical losses that arise from interference effects. Based on these results, a device with 19.2% steady‐state power conversion efficiency is achieved through incorporation of a perovskite film with near‐optimum predicted thickness (≈709 nm). Significantly, a clear signature of photon reabsorption is observed in perovskite films that have the same thickness (≈709 nm) as in the optimized device. Despite the positive effect of photon recycling associated with photon reabsorption, devices with thicker (>750 nm) MHP layers exhibit poor performance owing to competing nonradiative charge recombination in a “dead‐volume” of MHP. Overall, these findings demonstrate the need for fine control over MHP thickness to achieve the highest efficiency cells, and accurate consideration of photon reabsorption, optical interference, and charge transport properties.  相似文献   

17.
Perovskite solar cells (PSCs) have attracted much attention as efficiencies have gone beyond 24%. To achieve these impressive numbers, the PSC scientific community is working to improve the perovskite optoelectronic properties. Imaging and mapping characterization techniques have been widely used to understand the fundamental properties that allow lead halide perovskites to achieve high performance. In this review, these techniques are evaluated, from simple tools, such as electron microscopy, to more complex systems that include atomic force microscopy, synchrotron‐based X‐ray mapping, and ultrafast and photoluminescence mapping. These tools have helped understand lead halide perovskites and their impressive optoelectronic properties, which make them outstanding materials for solar cell applications.  相似文献   

18.
Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C‐9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro‐OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time‐resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro‐OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS‐integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro‐OMeTAD. Importantly, the low‐cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.  相似文献   

19.
Organic–inorganic halide perovskites are efficient absorbers for solar cells. Nevertheless, the trap states at the surfaces and grain boundaries are a detrimental factor compromising the device performance. Here, an organic dye (AQ310) is employed as passivator to reduce the trap states of the perovskites and promote better stability. The results demonstrate that the trap states of perovskite are minimized by the presence of AQ310's ?COOH group and the formation of coordination with under‐coordinated Pb2+ ions. The resulting carrier recombination time is prolonged and verified by the photoluminescence and open‐circuit voltage decay measurements. Consequently, the best average power conversion efficiency (PCE) of 19.43% is achieved for the perovskite solar cell (PSC) with AQ310 passivation, as compared with a low average PCE of 17.98% for the PSC without AQ310 passivation.  相似文献   

20.
Organic–inorganic halide perovskites are efficient absorbers for solar cells. Nevertheless, the trap states at the surfaces and grain boundaries are a detrimental factor compromising the device performance. Here, an organic dye (AQ310) is employed as passivator to reduce the trap states of the perovskites and promote better stability. The results demonstrate that the trap states of perovskite are minimized by the presence of AQ310's ? COOH group and the formation of coordination with under‐coordinated Pb2+ ions. The resulting carrier recombination time is prolonged and verified by the photoluminescence and open‐circuit voltage decay measurements. Consequently, the best average power conversion efficiency (PCE) of 19.43% is achieved for the perovskite solar cell (PSC) with AQ310 passivation, as compared with a low average PCE of 17.98% for the PSC without AQ310 passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号