首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
两种海桐属植物种子油脂肪酸组成的分析评价   总被引:7,自引:1,他引:7  
采用有机溶剂抽提了海桐属 2种植物 (海桐和皱叶海桐 )的籽油 ,使用气相色谱法 (GC)分析鉴定了其油脂的脂肪酸组分。 2种籽油均含有 6种脂肪酸 ,主要脂肪酸成分均为软脂酸 (C16∶0 )和油酸 (C18∶1)。其含量 ( % )分别为 :软脂酸 (C16∶0 ) 2 9.66,3 4 .72 ;油酸 (C18∶1) 66.4 3 ,62 .54。这两种油脂中 ,单不饱和脂肪酸油酸占优势 ,因而品质优良。提示海桐属植物籽油可作为保健型食用油研究和开发利用  相似文献   

4.
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as ‘weak’ contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was “masked” due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.  相似文献   

5.
6.
Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with different content of C18:3 in amphidiploid B. napus.  相似文献   

7.
Fatty acid desaturases can introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids. In the present study, 29 full-length desaturase genes were identified from soybean genome by a thorough annotation exercise. A comprehensive analysis was performed to characterize phylogeny, chromosomal locations, structures, conserved motifs, and expression patterns of those genes. The soybean genes were phylogenetically clustered into nine subfamilies with the Arabidopsis counterparts, FAB2, FAD2, FAD3, FAD5, FAD6, FAD7, FAD8, SLD1, and DES1. Twenty-nine desaturase genes were found to be distributed on at least 15 of the 20 soybean chromosomes. The gene structures and motif compositions were considerably conserved among the subfamilies. The majority of desaturase genes showed specific temporal and spatial expression patterns across different tissues and developmental stages based on microarray data analyses. The study may provide new insights into the origin and evolution of fatty acid biosynthesis pathways in higher plants. Additionally, the characterization of desaturases from soybean will lead to the identification of additional genes for genetic modification of plants to produce nutritionally important fatty acids.  相似文献   

8.
Most disease resistance genes encode nucleotide-binding-site (NBS) and leucine-rich-repeat (LRR) domains, and the NBS-LRR encoding genes are often referred to as R genes. Using newly developed approach, 478, 485, 1,194, 1,665, 2,042 and 374 R genes were identified from the genomes of tomato Heinz1706, wild tomato LA716, potato DM1-3, pepper Zunla-1 and wild pepper Chiltepin and tobacco TN90, respectively. The majority of R genes from Solanaceae were grouped into 87 subfamilies, including 16 TIR-NBS-LRR (TNL) and 71 non-TNL subfamilies. Each subfamily was annotated manually, including identification of intron/exon structure and intron phase. Interestingly, TNL subfamilies have similar intron phase patterns, while the non-TNL subfamilies have diverse intron phase due to frequent gain of introns. Prevalent presence/absence polymorphic R gene loci were found among Solanaceae species, and an integrated map with 427 R loci was constructed. The pepper genome (2,042 in Chiltepin) has at least four times of R genes as in tomato (478 in Heinz1706). The high number of R genes in pepper genome is due to the amplification of R genes in a few subfamilies, such as the Rpi-blb2 and BS2 subfamilies. The mechanism underlying the variation of R gene number among different plant genomes is discussed.  相似文献   

9.
One of the goals in oilseed rape programs is to develop genotypes producing oil with low linolenic acid content (C18:3, ≤3%). Low linolenic mutant lines of canola rapeseed were obtained via chemical mutagenesis at the Plant Breeding and Acclimatization Institute – NRI, in Poznan, Poland, and allele-specific SNP markers were designed for monitoring of two statistically important single nucleotide polymorphisms detected by SNaPshot analysis in two FAD3 desaturase genes, BnaA.FAD3 and BnaC.FAD3, respectively. Strong negative correlation between the presence of mutant alleles of the genes and linolenic acid content was revealed by analysis of variance. In this paper we present detailed characteristics of the markers by estimation of the additive and dominance effects of the FAD3 genes with respect to particular fatty acid content in seed oil, as well as by calculation of the phenotypic variation of seed oil fatty acid composition accounted by particular allele-specific marker. The obtained percentage of variation in fatty acid composition was considerable only for linolenic acid content and equaled 35.6% for BnaA.FAD3 and 39.3% for BnaC.FAD3, whereas the total percentage of variation in linolenic acid content was 53.2% when accounted for mutations in both genes simultaneously. Our results revealed high specificity of the markers for effective monitoring of the wild-type and mutated alleles of the Brassica napus FAD3 desaturase genes in the low linolenic mutant recombinants in breeding programs.  相似文献   

10.
11.
To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions.  相似文献   

12.
Siberian apricot seed kernel (SASK) contains a high of 50% oil with suitable fuel properties conformed to biodiesel standard. To date, Prunus sibirica is a novel non‐crop feedstock for biodiesel production in China. Here, oil contents and fatty acid (FA) compositions were identified in developing SASK from AS‐80 and AS‐84, at intervals of 1 week from 3 weeks after anthesis (WAA) to 9 weeks. The major differences in oil content between C18:1 and C18:2 levels were greater among the AS‐80 (32.69/15.48 g/100 g) than among the AS‐84 (25.78/13.15 g/100 g). Subsequently, the SASKs from 4, 6, and 8 WAA, respectively, representing early, middle, and late phases of oil accumulation, were selected as optimal samples for lipidomics analysis. It was notable that 18:1/18:1/18:2, 18:1/18:1/18:3, and 18:2/18:2/18:2 were the prominent compositions in triacylglycerol (TAG), and their higher content found among the AS‐80 was consistent with FA results. Although phosphatidic acid (PA) is directly connected with diacylglycerol (DAG) in Kennedy pathway, we found significant difference between PA and DAG compositions. The resulting molecular species differ in acyl composition depending on whether they were generated via phosphatidylcholine (PC) or Kennedy pathway. By qRT‐PCR analysis, the expression levels of FAD3, PDCT, and DAG‐CPT related to the biosynthesis of polyunsaturated fatty acids (PUFAs) showed a gradual decrease with SASK mature, explaining the drastic change of DAG‐18:3/18:3 content. Additionally, the lipidomics data coupled with qRT‐PCR analysis suggested that phospholipid:DAG acyltransferase may play a critical role in incorporation of PUFAs into sn‐3 of TAG. Our data contribute significantly to understand the underlying mechanisms of lipid accumulation in P. sibirica, and may also present strategies for engineering oil accumulation in oilseed plants.  相似文献   

13.
TRANSPARENT TESTA2 (TT2) regulates the biosynthesis of proanthocyanidins in the seed coat of Arabidopsis. We recently found that TT2 also participates in inhibition of fatty acid (FA) biosynthesis in the seed embryo. However, the mechanism by which TT2 suppresses the accumulation of seed FA remains unclear. In this study, we show that TT2 is expressed in embryos at an early developmental stage. TT2 is directly bound to the regulatory region of FUSCA3 (FUS3), and mediates the expression of numerous genes in the FA biosynthesis pathway. These genes include BCCP2, CAC2, MOD1 and KASII, which encode proteins involved in the initial steps of FA chain formation, FAD2 and FAD3, which are responsible for FA desaturation, and FAE1, which catalyzes very‐long‐chain FA elongation. Loss of function of TT2 results in reduced expression of GLABRA2 but does not cause a significant reduction in the mucilage attached to the seed coats, which competes with FA for photosynthates. TT2 is expressed in both maternal seed coats and embryonic tissues, but proanthocyanidins are only found in wild‐type seed coats and not in embryonic tissues. The amount of proanthocyanidins in the seed coat is negatively correlated with the amount of FAs in the embryo.  相似文献   

14.
15.
Producing healthy, high‐oleic oils and eliminating trans‐fatty acids from foods are two goals that can be addressed by reducing activity of the oleate desaturase, FAD2, in oilseeds. However, it is essential to understand the consequences of reducing FAD2 activity on the metabolism, cell biology and physiology of oilseed crop plants. Here, we translate knowledge from studies of fad2 mutants in Arabidopsis (Arabidopsis thaliana) to investigate the limits of non‐GMO approaches to maximize oleic acid in the seed oil of canola (Brassica napus), a species that expresses three active FAD2 isozymes. A series of hypomorphic and null mutations in the FAD2.A5 isoform were characterized in yeast (Saccharomyes cerevisiae). Then, four of these were combined with null mutations in the other two isozymes, FAD2.C5 and FAD2.C1. The resulting mutant lines contained 71–87% oleic acid in their seed oil, compared with 62% in wild‐type controls. All the mutant lines grew well in a greenhouse, but in field experiments we observed a clear demarcation in plant performance. Mutant lines containing less than 80% oleate in the seed oil were indistinguishable from wild‐type controls in growth parameters and seed oil content. By contrast, lines with more than 80% oleate in the seed oil had significantly lower seedling establishment and vigor, delayed flowering and reduced plant height at maturity. These lines also had 7–11% reductions in seed oil content. Our results extend understanding of the B. napusFAD2 isozymes and define the practical limit to increasing oil oleate content in this crop species.  相似文献   

16.
The CRISPR/Cas9 nuclease system is a powerful and flexible tool for genome editing, and novel applications of this system are being developed rapidly. Here, we used CRISPR/Cas9 to target the FAD2 gene in Arabidopsis thaliana and in the closely related emerging oil seed plant, Camelina sativa, with the goal of improving seed oil composition. We successfully obtained Camelina seeds in which oleic acid content was increased from 16% to over 50% of the fatty acid composition. These increases were associated with significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%). These changes result in oils that are superior on multiple levels: they are healthier, more oxidatively stable and better suited for production of certain commercial chemicals, including biofuels. As expected, A. thaliana T2 and T3 generation seeds exhibiting these types of altered fatty acid profiles were homozygous for disrupted FAD2 alleles. In the allohexaploid, Camelina, guide RNAs were designed that simultaneously targeted all three homoeologous FAD2 genes. This strategy that significantly enhanced oil composition in T3 and T4 generation Camelina seeds was associated with a combination of germ‐line mutations and somatic cell mutations in FAD2 genes in each of the three Camelina subgenomes.  相似文献   

17.
18.
付三雄  戚存扣 《植物学报》2009,44(2):178-184
分别在南京(海拔8.9 m)和拉萨(海拔3 658 m)2个不同海拔地区种植甘蓝型油菜(Brassica napus)高油品系H105, 该材料含油量在两地分别为(46.04±1.42)%和(53.09±1.35)%。利用拟南芥表达谱基因芯片检测两地种植的H105开花后30天种子基因的表达。以种植在南京的H105为对照, 差异表达分析结果显示有421个差异表达的基因, 其中229个基因表达下调, 192个基因表达上调。这些基因按功能可初步分为代谢相关、运输相关、结合相关、转录相关、结构相关、发育相关、信号转导相关、其它相关及功能未知基因等几大类别。一些与光合成、糖代谢以及脂肪酸合成相关的重要基因, 如叶绿素a-b结合蛋白基因家族、蔗糖合酶、丙酮酸激酶、6-磷酸葡萄糖酸脱氢酶、ATP-柠檬酸裂解酶、柠檬酸合酶、异柠檬酸脱氢酶、脂肪酸去饱和酶(FAD6和FAD7)基因等被鉴定为差异表达。研究结果初步揭示了相关基因的表达变化规律, 为探讨油菜在不同海拔地区含油量差异的分子遗传机理提供了重要信息。  相似文献   

19.
Brassicaceous seed meals are the residual materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that potentially degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassica juncea 'Pacific Gold', B. napus 'Dwarf Essex' and 'Sunrise', and Sinapis alba 'IdaGold', against mixed stages of Pratylenchus penetrans and Meloidogyne incognita second-stage juveniles (J2). The brassicaceous seed meals were applied to soil in laboratory assays at rates ranging from 0.5 to 10.0% dry w/w with a nonamended control included. Nematode mortality was assessed after 3 days of exposure and calculated as percentage reduction compared to a nonamended control. Across seed meals, M. incognita J2 were more sensitive to the brassicaceous seed meals compared to mixed stages of P. penetrans. Brassica juncea was the most nematode-suppressive seed meal with rates as low as 0.06% resulting in > 90% suppression of both plant-parasitic nematodes. In general B. napus 'Sunrise' was the least nematode-suppressive seed meal. Intermediate were the seed meals of S. alba and B. napus 'Dwarf Essex'; 90% suppression was achieved at 1.0% and 5.0% S. alba and 0.25% and 2.5% B. napus 'Dwarf Essex', for M. incognita and P. penetrans, respectively. For B. juncea, seed meal glucosinolate-degradation products appeared to be responsible for nematode suppression; deactivated seed meal (wetted and heated at 70 °C for 48 hr) did not result in similar P. penetrans suppression compared to active seed meal. Sinapis alba seed meal particle size also played a role in nematode suppression with ground meal resulting in 93% suppression of P. penetrans compared with 37 to 46% suppression by pelletized S. alba seed meal. This study demonstrates that all seed meals are not equally suppressive to nematodes and that care should be taken when selecting a source of brassicaceous seed meal for plant-parasitic nematode management.  相似文献   

20.
Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号